光子学报, 2015, 44 (5): 0506001, 网络出版: 2015-05-26   

基于超晶格结构衍射图的倒易矢量分布

Distribution of Reciprocal Vectors Based on Diffraction Patterns of Superlattice Structures
作者单位
中国传媒大学 理工学部, 北京 100024
摘要
根据超晶格结构的激光衍射图, 提出了一种定量确定倒易矢量分布的实验方法.首先, 将正方形周期超晶格结构作为参考光栅, 得到其衍射图.根据傅里叶光学理论, 计算出基本倒易矢量的大小, 与衍射图上的几何长度建立标尺关系.通过引入矩形超晶格结构, 证明了该方法在周期超晶格结构中的可行性.其次, 将H型和谢尔宾斯基分形超晶格结构作为光栅, 获得的衍射图与正方形结构衍射图进行对比.由衍射点间的几何长度比值, 推算出分形衍射图中的倒易矢量分布.根据倒易矢量和准相位匹配谐频的基频波长之间的定量关系, 理论计算出能够进行的谐频波长.最后, 实验制备分形结构LiNbO3非线性光子晶体, 探测准相位匹配倍频, 所实现的倍频波长与理论计算值相吻合.谢尔宾斯基分形结构光栅在理论与实验上均可实现1.352 μm的有效倍频输出.
Abstract
A experimental method was provided, in which the distribution of reciprocal vectors can be easily obtained by their diffraction patterns. First, the diffraction pattern of square periodic superlattice as a reference grating was gotten. The value of the reciprocal vector according to the Fourier optics was calculated, and the scale relation with the geometric length in the pattern was built. By introducing the rectangular superlattice structure, this method was proved to be right in the periodic superlattices. Secondly, the diffraction patterns of the H-shape and Sierpinski fractal superlattice structures were realized and made a comparison with the square structure. The reciprocal vectors in two structures could be calculated based on the obtained geometric length ratio. Then by quantitative relation between the reciprocal vectors and fundamental wavelengths in quasi-phase matching processes, the harmonic wavelengths were calculated. Finally, the LiNbO3 nonlinear photonic crystals with fractal superlattice structures were fabricated experimentally. It can be gotten that the experimental quasi-phase matching harmonic wavelengths agree with the calculated ones. Especially, for Sierpinski fractal superlattice, by calculation, the effective second harmonic of 1.352 μm can be realized. And the corresponding results can be accomplished by experiments.
参考文献

[1] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J] Physical Review, 1962, 127(6): 1918-1939.

[2] ZHU Shi-ning, ZHU Yong-yuan, MING Nai-ben. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1999, 278(7): 843-846.

[3] 薛挺, 华勇, 杨德伟,等. 周期极化铌酸锂THz波产生理论分析[J]. 光子学报, 2004, 33(10): 1180-1186.

    XUE Ting, HUA Yong,YANG De-wei et al. Theoretical analysis of terahertz radiation generated in periodically poled lithium niobate[J]. Acta Photonica Sinica, 2004, 33(10): 1180-1186.

[4] 陈云琳, 郭娟, 刘晓娟,等. 准相位匹配周期极化掺镁铌酸锂490 nm倍频连续输出[J]. 光子学报, 2005, 34(1): 29-31.

    CHEN Yun-lin, Guo Juan, Liu Xiao-luan, et al. Continuous-wave quasi-phase-matched second harmonic generation at 490 nm in periodically poled MgO∶LiNbO3[J]. Acta Photonica Sinica, 2005, 34(1): 29-31.

[5] 门艳彬, 王丽, 温芳,等. 非共线准相位匹配周期极化RbTiOAsO4的增益带宽[J]. 光子学报, 2010, 39(1): 12-15.

    MEN Yan-bin, WANG li, WEN fang et al. Gain bandwidth of periodically poled RbTiOAsO4 in noncollinear quasi-phase matching[J]. Acta Photonica Sinica, 2010, 39(1): 12-15.

[6] 王爱华, 赵静. 倾斜入射光入射于一维非线性光子晶体中带宽加宽的二次谐波的产生[J]. 光子学报, 2012, 41(7): 786-789.

    WANG Ai-hua, ZHAO Jing. Second harmonic generation with broadened band width in one-dimensional nonlinear photonic crystal at the oblique incidence of light[J]. Acta Photonica Sinica, 2012, 41(7): 786-789.

[7] BERGER V. Nonlinear photonic crystals[J]. Physical Review Letters, 1998, 81(19): 4136-4139.

[8] NI Pei-gen, MA Bo-qin, WANG Xue-hua, et al. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching[J]. Applied Physics Letters, 2003, 82(24): 4230-4232.

[9] SHENG Yan, ROPPO Vito, REN Ming-liang, et al. Multi-directional Cerenkov second harmonic generation in two-dimensional nonlinear photonic crystal[J]. Optics Express, 2012, 20(4): 3948-3953.

[10] ZHAO Xiao-hui, ZHENG Yuan-lin, REN Huai-jin, et al. Cherenkov second-harmonic Talbot effect in one-dimension nonlinear photonic crystal[J]. Optics Letters, 2014, 39(20): 5885-5887.

[11] CHEN Bao-qin, ZHANG Chao, LIU Rong-juan, et al. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals[J]. Applied Physics Letters, 2014, 105(15): 151106.

[12] REN Ming-liang, MA Dong-li, LI Zhi-yuan. Experimental demonstration of super quasi-phase matching in nonlinear photonic crystal[J].Optics Letters, 2011, 36(18): 3696-3698.

[13] HOU Bo, XU Gu, WEN Wei-jia, et al. Diffraction by an optical fractal grating[J]. Applied Physics Letters, 2004, 85(25): 6125-6127.

[14] SHENG Yan, MA Dong-li, REN Ming-liang. Broadband cascading of second-order nonlinearity in randomized nonlinear photonic crystal[J]. Journal of Physics D: Applied Physics, 2012, 45(36): 365105.

[15] EDWARDS G J, LAWRENCE M. A temperature-dependent dispersion equation for congruently grown lithium niobate[J]. Optical and Quantum Electronics, 1984, 16(4): 373-375.

[16] MANDELBROT B. Fractals: form, chance and dimension[M]. San Francisco: W.H. Freeman, 1977.

[17] MA Bo-qin, REN Ming-liang, MA Dong-li, et al. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure[J]. Applied Physics B: Lasers & Optics, 2013, 111(2): 183-187.

马博琴, 史建华, 田少华. 基于超晶格结构衍射图的倒易矢量分布[J]. 光子学报, 2015, 44(5): 0506001. MA Bo-qin, SHI Jian-hua, TIAN Shao-hua. Distribution of Reciprocal Vectors Based on Diffraction Patterns of Superlattice Structures[J]. ACTA PHOTONICA SINICA, 2015, 44(5): 0506001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!