中国激光, 2015, 42 (9): 0908006, 网络出版: 2015-09-06   

基于离轴显微干涉术的单幅干涉图相位求解

Phase Retrieval with One Interferogram by Reflecting Off-Axis Microscopic Interferometry
作者单位
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
摘要
提出一种用于测量微结构表面形貌的离轴显微干涉术。该技术的实验装置为一个优化的马赫-曾德尔干涉仪。其特点为参考波是具有一定载频的倾斜波。该技术中应用CCD 记录离轴显微干涉图,并用傅里叶变换方法对记录的干涉图在傅里叶面进行频谱滤波求解相位。不同于经典显微干涉术,离轴显微干涉图的载频较高,仅需单幅干涉图即可得到相位信息。因此该技术在测量中具有防振、快捷有效的特点。利用一个标准微台阶以及微孔阵列的形貌检测结果验证该技术的有效性,同时与轮廓仪的测试结果进行对比,证明结果一致。被测物也应用Mirau干涉显微镜进行测试,实验结果表明经典显微干涉图干涉信息载频不足,仅使用单幅干涉图不能得到正确相位,该组实验证明了离轴显微干涉术相对于传统显微干涉术的优越性。
Abstract
A technique called off-axis microscopic interferometry is developed to measure the surface profile of microstructures. This technique involves the use of a modified Mach-Zehnder microscopic interferometer with a tilted reference wave. The technique uses a CCD camera to record the off-axis microscopic interferogram and performs filtering in the Fourier plane via the Fourier transform method for phase retrieval. In contrast to classical microscopic interferometry, the carrier frequency of the off-axis microscopic interferogram is sufficiently high to facilitate acquisition of the phase from only one interferogram. As a result, measurements using this technique are vibration-immune and efficient. The experimental results obtained for a step height standard as well as a microhole array are consistent with measurements taken using a stylus profilometer. Further, the results of a comparative experiment conducted using a Mirau interferometric microscope show that the carrier frequency added to the classical microscopic interferogram cannot be as high as that of off-axis microscopic interferogram. Therefore, it will lead to incorrect phase retrieval with one interferogram.
参考文献

[1] Pryputniewicz R J. Holography[M]. //Springer Handbook of Experimental Solid Mechanics. New York: Springer, 2008: 675-700.

[2] Yang L, Ettemeyer A. Strain measurement by three-dimensional electronic speckle pattern interferometry: Potentials, limitations, and applications[J]. Optical Engineering, 2003, 42(5): 1257-1266.

[3] Post D, Han B, Moiré interferometry[M]. //Springer Handbook of Experimental Solid Mechanics. New York: Springer, 2008: 627-654.

[4] Nelson D V. Residual stress determination by hole drilling combined with optical methods[J]. Experimental Mechanics, 2010, 50(2): 145-158.

[5] Lin C S, Loh G H, Fu S H, et al.. An automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope[J]. Measurement Science and Technology, 2010, 21(10): 105304.

[6] Petitgrand S, Bosseboeuf A. Simultaneous mapping of out-of-plane and in-plane vibrations of MEMS with (sub)nanometer resolution [J]. Journal of Micromechanics and Microengineering, 2004, 14(9): S97.

[7] Nolte D. Interference microscopy[M]. //Optical Interferometry for Biology and Medicine. New York: Springer, 2012: 251-272.

[8] Chen F, Brown G M, Song M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering, 2000, 39(1): 10-22.

[9] Windecker R, Fleischer M, Korner K, et al.. Testing micro devices with fringe projection and white-light interferometry[J]. Optics and Lasers in Engineering, 2001, 36(2): 141-154.

[10] Guo T, Zhang Y, Wang S, et al.. Micro- structure characterization based on white light interferometry[C]. 2012 International Workshop on Image Processing and Optical Engineering, 2012: 833509.

[11] Wang Z, Han B. Advanced iterative algorithm for phase extraction of randomly phase- shifted interferograms[J]. Optics Letters, 2004, 29(14): 1671-1673.

[12] Marroquin J L, Servin M, Rodriguez Vera R. Adaptive quadrature filters for multiple phase- stepping images[J]. Optics Letters, 1998, 23(4): 238-240.

[13] Larkin K. A self- calibrating phase- shifting algorithm based on the natural demodulation of two- dimensional fringe patterns[J]. Optics Express, 2001, 9(5): 236-253.

[14] Osten W. Optical Inspection of Microsystems[M]. Boca Raton: CRC Press, 2006: 376.

[15] Ikeda T, Popescu G, Dasari R R, et al.. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics Letters, 2005, 30(10): 1165-1167.

[16] Jang J, Bae C Y, Park J K, et al.. Self-reference quantitative phase microscopy for microfluidic devices[J]. Optics Letters, 2010, 35(4): 514-516.

[17] Popescu G, Ikeda T, Dasari R R, et al.. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 2006, 31(6): 775-777.

[18] Hu X, Liu G, Hu C, et al.. Characterization of static and dynamic microstructures by microscopic interferometry based on a Fourier transform method[J]. Measurement Science and Technology, 2006, 17(6): 1312.

[19] Srivastava V, Anna T, Mehta D S. Full-field Hilbert phase microscopy using nearly common-path low coherence off-axis interferometry for quantitative imaging of biological cells[J]. Journal of Optics, 2012, 14(12): 125707.

[20] Garcia-Sucerquia J, Ramírez J A H, Prieto D V. Reduction of speckle noise in digital holography by using digital image processing [J]. Optik-International Journal for Light and Electron Optics, 2005, 116(1): 44-48.

[21] Cuche E, Marquet P, Depeursinge C. Aperture apodization using cubic spline interpolation: Application in digital holographic microscopy [J]. Optics Communications, 2000, 182(1): 59-69.

[22] Schlichthaber F, von Bally G, Kemper B. Influence of Fresnel diffraction on numerical propagation and correction of tilted image planes in digital holographic microscopy[C]. SPIE, 2012, 8430: 843003.

[23] Schnars U, Juptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

[24] Schnars U, Juptner W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85.

[25] Weng J, Zhong J, Hu C. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy[J]. Optics Express, 2008, 16(26): 21971-21981.

曾雅楠, 雷海, 常新宇, 胡晓东, 胡小唐. 基于离轴显微干涉术的单幅干涉图相位求解[J]. 中国激光, 2015, 42(9): 0908006. Zeng Yanan, Lei Hai, Chang Xinyu, Hu Xiaodong, Hu Xiaotang. Phase Retrieval with One Interferogram by Reflecting Off-Axis Microscopic Interferometry[J]. Chinese Journal of Lasers, 2015, 42(9): 0908006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!