人工晶体学报, 2020, 49 (10): 1870, 网络出版: 2021-01-09  

冷冻干燥辅助溶胶凝胶法合成Li1.2Ni0.2Mn0.6O2正极材料及电化学性能改善研究

Improved Electrochemical Performance of Li1.2Ni0.2Mn0.6O2 Cathode Materials Synthesized by Freeze-Drying Assisted Sol-Gel Method
作者单位
1 吉首大学物理与机电工程学院,吉首 416000
2 锰锌钒产业技术湖南省2011协同中心,吉首 416000
3 吉首大学化学化工学院,吉首 416000
4 4.吉首大学生物资源与环境科学学院,吉首 416000
摘要
采用冷冻干燥辅助溶胶凝胶法合成富锂锰基Li1.2Ni0.2Mn0.6O2正极材料,并将其结构、形貌以及电化学性能与传统溶胶凝胶法合成的材料进行比较。X射线衍射(XRD)结果表明,通过冷冻干燥辅助溶胶凝胶法合成的Li1.2Ni0.2Mn0.6O2粉末阳离子混排程度更低,冷冻干燥工艺的参与可以改善晶体结构。扫描电镜(SEM)照片分析表明,与溶胶凝胶样品相比较,冷冻干燥辅助溶胶凝胶法合成样品的颗粒团聚程度较低。电化学性能测试结果表明,冷冻干燥辅助溶胶凝胶法合成的材料具有更好的倍率性能和循环性能。除此之外,电化学交流阻抗测试(EIS)结果表明,冷冻干燥辅助溶胶凝胶法合成的Li1.2Ni0.2Mn0.6O2电荷转移电阻低于溶胶凝胶法制备的材料,增强了反应动力学。
Abstract
Li-rich Mn-based Li1.2Ni0.2Mn0.6O2 cathode materials were synthesized by freeze-drying assisted sol-gel method, and its structure, morphology, and electrochemical performance were compared with the same materials synthesized by traditional sol-gel method. XRD results show that the Li1.2Ni0.2Mn0.6O2 powders synthesized by freeze-drying assisted sol-gel method exhibit lower cation mixing, and the crystalline structure is improved by the presence of freeze-drying process. SEM images indicate that the extent of particle agglomeration of the materials synthesized by freeze-drying assisted sol-gel method is lower compared to the sol-gel sample. Electrochemical test results indicate that the materials synthesized by freeze-drying assisted sol-gel method exhibited better rate capability and cyclability. Besides, EIS results suggest that the charge transfer resistance of Li1.2Ni0.2Mn0.6O2 synthesized by freeze-drying assisted sol-gel method is much lower than that of the Li1.2Ni0.2Mn0.6O2 prepared by sol-gel method, which enhances the reaction kinetics.
参考文献

[1] Amine K, Kanno R, Tzeng Y. Rechargeable lithium batteries and beyond: progress, challenges, and future directions[J]. MRS bulletin, 2014, 39(5): 395-405.

[2] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.

[3] Wang J, Liu Z, Yan G, et al. Improving the electrochemical performance of lithium vanadium fluorophosphate cathode material: focus on interfacial stability[J]. Journal of Power Sources, 2016, 329(15): 553-557.

[4] Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & environmental science, 2014, 7(1): 14-18.

[5] Wu X W, Xiang Y H, Peng Q J, et al. A green-low-cost rechargeable aqueous Zinc-ion battery using hollow porous spinel ZnMn2O4 as the cathode material[J]. Journal of Materials Chemistry A, 2017, 5: 17990-17997.

[6] Wang J X, Zhang Q B, Li X H, et al. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries[J]. Nano Energy, 2014, 6: 19-26.

[7] Wu X W, Li Y H, Xiang Y H, et al. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2based on hybrid electrolyte[J]. Journal of Power Sources, 2016, 336(30): 35-39.

[8] Du K, Hu G R. Review of manganese-based solid solution xLi[Li1/3Mn2/3]O2·(1-x)LiMO2[J]. Chinese Science Bulletin(Chinese Version), 2012, 57(10): 794-804.

[9] 赵雪玲,唐道平,麦永津,等.溶胶凝胶法合成富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及性能表征[J].无机化学学报,2013,29(5):1013-1018.

[10] Yan J, Liu X, Li B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries[J]. RSC Adv, 2014, 4(108): 63268-63284.

[11] Li B, Yan H, Ma J, et al. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:towards better electrochemical performance[J]. Advanced Functional Materials, 2014, 24(32): 5112-5118.

[12] 尹艳萍,卢华权,王 忠,等. 富锂层状正极材料Li1.2Mn0.54Ni0.13Co0.13O2的二次颗粒粒径对其倍率性能的影响[J]. 无机化学学报, 2015, 31(10): 1966-1970.

[13] Liu H, Wu Y P, Rahm E, et al. Cathode materials for lithium ion batteries prepared by sol-gel methods[J]. Journal of Solid State Electrochemistry, 2004, 8(7): 450-466.

[14] Qiao Y Q, Wang X L, Mai Y J, et al. Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries[J]. Journal of Alloys & Compounds, 2012, 536: 132-137.

[15] Fang J, Wang S, Yao X, et al. Ration design of porous Mn-doped Na3V2(PO4)3 cathode for high rate and super stable sodium-ion batteries[J]. Electrochimica Acta, 2019, 295: 262-269.

[16] Zheng J M, Xu P H, Gu M, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chemistry of Materials, 2015, 27(4):1381-1390.

[17] 王力臻,徐 勇,方 华,等.葡萄糖对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料性能的影响[J].无机化学学报,2015,31(5): 873-879.

[18] 孙 镇,向延鸿,李 剑,等.Li1.2Ni0.2Mn0.6O2溶胶-凝胶制备与电化学性能研究[J].现代化工,2017,37(5):85-88.

[19] Liu L, Zhang N, Sun K, et al. High rate performance of Li[Ni1/3Co1/3Mn1/3]O2 synthesized via co-precipitation method by different precipitators[J]. Journal of Physics & Chemistry of Solids, 2009, 70(3/4): 727-731.

[20] 程 斌.锂/钠离子电池电极材料磷酸钒锂/钠的制备及表征[D].合肥:中国科学技术大学,2016.

[21] 严武渭,柳永宁,崇少坤,等.高能量密度锂离子电池用富锂正极材料[J].化学进展,2017,29(Z2):198-209.

[22] 廖启军,向延鸿,段文杰,等.纳米分散颗粒Li1.2Ni0.2Mn0.6O2材料的制备及性能[J].人工晶体学报,2018,47(12):2593-2598.

[23] 杨 陈,向延鸿,章顺坤,等.Co掺杂对富锂锰基正极材料Li1.2Ni0.2Mn0.6O2电化学性能的影响[J].人工晶体学报,2018,47(3):629-634.

[24] Wu L, Wang Z X, Li X H, et al. Preparation of Ti4+-doped LiFePO4 by precursor-doping and room temperature reduction Via ball-milling[J]. Journal of Central South University: Science and Technology, 2009, 40(2): 288-293.

[25] 朱伟雄,李新海,王志兴,等.锂离子电池富锂材料Li[Li0.2Ni0.2Mn0.6]O2的制备及掺杂改性[J].中国有色金属学报,2013,23(4): 1047-1052.

[26] 夏书标,张英杰,董 鹏,等.细化颗粒固相法合成锂离子电池正极材料LiNi0.80Co0.15Al0.05O2及其结构和电化学性能研究[J].高校化学工程学报,2015,29(2):425-431.

[27] Liu H, Chen C, Du C Y, et al. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 3(6): 2634-2641.

段文杰, 江友良, 刘赛求, 廖启军, 向延鸿, 吴贤文, 熊利芝, 何则强. 冷冻干燥辅助溶胶凝胶法合成Li1.2Ni0.2Mn0.6O2正极材料及电化学性能改善研究[J]. 人工晶体学报, 2020, 49(10): 1870. DUAN Wenjie, JIANG Youliang, LIU Saiqiu, LIAO Qijun, XIANG Yanhong, WU Xianwen, XIONG Lizhi, HE Zeqiang. Improved Electrochemical Performance of Li1.2Ni0.2Mn0.6O2 Cathode Materials Synthesized by Freeze-Drying Assisted Sol-Gel Method[J]. Journal of Synthetic Crystals, 2020, 49(10): 1870.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!