红外与激光工程, 2020, 49 (1): 0103004, 网络出版: 2020-06-08  

锗近红外光电探测器制备工艺研究进展

Research progress of technologies for germanium near-infrared photodetectors
作者单位
1 厦门大学嘉庚学院, 福建 漳州 363105
2 厦门大学 物理科学与技术学院, 福建 厦门 361005
摘要
Ge材料由于在近红外波段具有较大的吸收系数、高的载流子迁移率、以及与Si工艺相兼容等优势而被视为制备近红外光电探测器最理想的材料之一。针对Ge光电探测器制备过程中面临的挑战, 文中综述了近年来笔者所在的课题组在Ge探测器材料、器件及工艺方面的研究进展。首先介绍了Si基Ge材料的制备工艺, 利用低温缓冲层生长技术、Ge/Si键合技术、Ge浓缩技术等分别制备得到高晶体质量的Si基Ge材料。研究了Ge材料n型掺杂工艺, 利用离子注入结合两步退火处理(低温预退火和激光退火)以及利用固态磷旋涂工艺等分别实现Ge材料n型高掺浅结制备。最后探究了金属/Ge接触势垒高度的调制方法, 结合金属中间层和透明导电电极ITO制备得到性能良好的Ge肖特基光电探测器。
Abstract
Germanium (Ge) is considered as one of the most promising materials for near infrared (NIR) photodetectors, due to its large absorption coefficient at NIR wavelengths, high carrier mobilities, and process compatibility with silicon (Si) architecture. Focusing on the challenges of Ge NIR photodetectors, in this paper, the progress of Ge materials and technologies for photodetectors in our group was reviewed extensively. Firstly, the preparation process of Si-based Ge materials was introduced, in which high crystal quality Si-based Ge materials were fabricated by a two-step epitaxy method, Ge/Si wafer bonding, and Ge condensation techniques, respectively. Then the n-type doping technology of Ge was studied, in which high n-type doping concentrations and shallow junctions of Ge materials were prepared by two-step annealing (low temperature pre-annealing and excimer laser annealing) for phosphorus-implanted Ge substrate and spin-on doping of phosphorus on Ge substrate, respectively. Finally, the modulation of Schottky barrier height of metal/Ge contacts were studied, and a high-performance Ge Schottky photodetector was prepared by combining ITO transparent electrode and ultra-thin metal film interlayer.
参考文献

[1] Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6): 702-709.

    Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6): 702-709.

[2] Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25): 32110-32119.

    Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25): 32110-32119.

[3] Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100) [J]. Japanese Journal of Applied Physics, 2003, 42(5B): L517.

    Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100) [J]. Japanese Journal of Applied Physics, 2003, 42(5B): L517.

[4] Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities [J]. Applied Physics Letters, 2005, 87(18): 182102.

    Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities [J]. Applied Physics Letters, 2005, 87(18): 182102.

[5] Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5): 052113.

    Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5): 052113.

[6] Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD[J]. Applied Surface Science, 2014, 299: 1-5

    Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD[J]. Applied Surface Science, 2014, 299: 1-5

[7] Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2): 148.

    Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2): 148.

[8] Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device [J]. Journal of Materials Science, 2019, 54(3): 2406-2416.

    Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device [J]. Journal of Materials Science, 2019, 54(3): 2406-2416.

[9] 赖淑妹, 毛丹枫, 陈松岩, 等. 智能剥离制备GOI材料[J].南京大学学报(自然科学), 2017, 53(3): 441-449.

    赖淑妹, 毛丹枫, 陈松岩, 等. 智能剥离制备GOI材料[J].南京大学学报(自然科学), 2017, 53(3): 441-449.

    Lai Shumei, Mao Danfeng, Chen Songyan, et al. Fabrication of germanium-on-insulator by smart-cut (TM) technology[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 441-449. (in Chinese)

    Lai Shumei, Mao Danfeng, Chen Songyan, et al. Fabrication of germanium-on-insulator by smart-cut (TM) technology[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 441-449. (in Chinese)

[10] Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain [J]. The Journal of Physical Chemistry C, 2018, 122(15): 8564-8572.

    Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain [J]. The Journal of Physical Chemistry C, 2018, 122(15): 8564-8572.

[11] Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission [J]. Optics Express, 2013, 21(1): 640-646.

    Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission [J]. Optics Express, 2013, 21(1): 640-646.

[12] Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature [J]. Materials Science in Semiconductor Processing, 2019, 97: 56-61.

    Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature [J]. Materials Science in Semiconductor Processing, 2019, 97: 56-61.

[13] Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11): 60.

    Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11): 60.

[14] Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88: 28-34.

    Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88: 28-34.

[15] Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5): 050301.

    Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5): 050301.

[16] Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm [J]. Applied Physics Express, 2019, 12(5): 055504.

    Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm [J]. Applied Physics Express, 2019, 12(5): 055504.

[17] Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9): 3060-3065.

    Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9): 3060-3065.

[18] Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1485-1488.

    Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1485-1488.

[19] Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4): 231-236.

    Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4): 231-236.

[20] Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium [J]. Applied Surface Science, 2017, 392(1): 1173-1180.

    Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium [J]. Applied Surface Science, 2017, 392(1): 1173-1180.

[21] Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D: Applied Physics, 2019, 52(19): 195101.

    Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D: Applied Physics, 2019, 52(19): 195101.

[22] Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9): 1328.

    Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9): 1328.

[23] 吴政, 王尘, 严光明, 等. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能[J]. 物理学报, 2012, 61(18): 353-358.

    吴政, 王尘, 严光明, 等. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能[J]. 物理学报, 2012, 61(18): 353-358.

    Wu Zheng, Wang Chen, Yan Guangmin, et al. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact [J]. Acta Physica Sinica, 2012, 61(18): 353-358. (in Chinese)

    Wu Zheng, Wang Chen, Yan Guangmin, et al. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact [J]. Acta Physica Sinica, 2012, 61(18): 353-358. (in Chinese)

[24] Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284: 877-880.

    Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284: 877-880.

[25] Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride [J]. IEEE Electron Device Letters, 2014, 35(12): 1188-1190.

    Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride [J]. IEEE Electron Device Letters, 2014, 35(12): 1188-1190.

[26] Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19): 192103.

    Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19): 192103.

[27] Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering: B, 2016, 211: 178-184.

    Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering: B, 2016, 211: 178-184.

[28] Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2): 021301.

    Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2): 021301.

[29] Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering: B, 2017, 224: 103-109.

    Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering: B, 2017, 224: 103-109.

[30] Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1 650 nm detection[J]. Applied Physics Express, 2018, 11(10): 102203.

    Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1 650 nm detection[J]. Applied Physics Express, 2018, 11(10): 102203.

黄志伟, 汪建元, 黄巍, 陈松岩, 李成. 锗近红外光电探测器制备工艺研究进展[J]. 红外与激光工程, 2020, 49(1): 0103004. Huang Zhiwei, Wang Jianyuan, Huang Wei, Chen Songyan, Li Cheng. Research progress of technologies for germanium near-infrared photodetectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!