光学学报, 2016, 36 (6): 0612002, 网络出版: 2016-05-25   

调制度测量轮廓术中高度映射与相机同时标定的方法 下载: 582次

A Method of Both Height Mapping and Camera Calibration at the Same Time in Modulation Measuring Profilometry
作者单位
1 四川大学电子信息学院, 四川 成都 610065
2 四川大学计算机学院, 四川 成都 610065
摘要
传统的调制度测量轮廓术在进行系统的标定时,需要将标准平面多次精密移动,以建立调制度与实际物理高度的映射关系,同时还要对摄像机进行单独的标定。提出一种新的用于调制度测量轮廓术系统的高度映射与相机同时标定的方法。该方法用一个含有多个台阶的标定模块代替传统的调制度测量轮廓术标定方法中使用的标准平面及复杂的平移定位系统,多个高度相同但空间离散分布的台阶构成多个虚拟校准平面,虚拟平面上的调制度分布是通过一个拟合过程实现的,同时多个台阶的中心点还可以作为立体靶标用于相机标定。这种标定方法的特点是:只需要一次扫描测量过程就可以完成系统的标定,包括建立调制度与高度的映射关系和对相机的标定。阐述了该标定方法的原理,并给出实验结果说明了该标定方法的有效性。
Abstract
In the calibration process for traditional modulation measuring profilometry, a standard plane needs to be moved several times to establish the mapping relationship between modulation and actual physical height. And the camera calibration process needs to be done separately. A new calibration method for modulation measuring profilometry is proposed, which can implement height mapping and camera calibration at the same time. In this method, a standard block is used instead of the standard plane and the complex translation stage system in the traditional methods. Several separated stages with the same height but whose spatial distribution is discrete are used to form a virtual calibration plane, on which the modulation distribution is obtained by fitting process, and the multi-stages can also be used in the lateral coordinates calibration process. The characteristics of this method are that only one scanning process is required for setting up the mapping relationship between the modulation and height and calibrating the lateral coordinates. The theory analysis of the proposed method is given and experiment proves the feasibility of the method.
参考文献

[1] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Adv Opt Photon, 2011, 3(2): 128-160.

[2] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

    Su Xianyu, Zhang Qican, Chen Wenjing. Three-dimensional imaging based on structured illumination[J]. Chinese J Lasers, 2014, 41(2): 0209001.

[3] Chen F, Brown G M, Song M M. Overview of three-dimensional shape measurement using optical methods[J]. Opt Eng, 2000, 39(1): 10-22.

[4] Su X Y, Von B G, Vukicevic D. Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation[J]. Opt Commun, 1993, 98(1): 141-150.

[5] 郝煜栋, 赵洋, 李达成. 非线性小数重合法及其在轮廓测量中的应用[J]. 光学学报, 1999, 19(11): 1518-1522.

    Hao Yudong, Zhao Yang, Li Dacheng. Nonlinear excess fraction method and its applications to profilometry[J]. Acta Optica Sinica, 1999,19(11): 1518-1522.

[6] Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Appl Opt, 1984, 23(18): 3105-3108.

[7] 刘元坤, Olesch E, 杨征, 等. 基于双频正交光栅一维相移的相位测量偏折术研究[J]. 中国激光, 2015, 42(3): 0308005.

    Liu Yuankun, Olesch E, Yang Zheng, et al.. A one-dimensional phase-shift technique based on dual-frequency crossed fringe for phase measuring deflectometry[J]. Chinese J Lasers, 2015, 42(3): 0308005.

[8] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Appl Opt, 1983, 22(24): 3977-3982.

[9] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Opt Laser Eng, 2001, 35(5): 263-284.

[10] 张望平, 吕晓旭, 刘胜德, 等. 基于时域傅里叶变换的广义相移相位恢复方法[J]. 中国激光, 2015, 42(9): 0908004.

    Zhang Wangping, Lü Xiaoxu, Liu Shengde, et al.. Generalized phase-shifting phase retrieval approach based on time-domain fourier transform[J]. Chinese J Lasers, 2015, 42(9): 0908004.

[11] Takeda M, Aoki T, Miyamoto Y, et al.. Absolute three-dimensional shape measurements using coaxial and coimage plane optical systems andfourier fringe analysis for focus detection[J]. Opt Eng, 2000, 39(1): 61-68.

[12] Yoshizawa T, Shinoda T, Otani Y. Uniaxis rangefinder using contrast detection of a projected pattern[C]. SPIE, 2001, 4190: 115-122.

[13] Dou Yunfu, Su Xianyu. A flexible 3D profilometry based on fringe contrast analysis[J]. Opt Laser Technolo, 2012, 44(4): 844-849.

[14] 窦蕴甫, 苏显渝, 陈延非. 一种快速的调制度测量轮廓术[J]. 光学学报, 2009, 29(7): 1858-1862.

    Dou Yunfu, Su Xianyu, Chen Yanfei. A fast modulation measurement profilometry[J]. Acta Optica Sinica, 2009, 29(7): 1858-1862.

[15] 邵双运, 徐楠. 基于调制度比的光学三维测量轮廓术[J]. 中国激光, 2009, 36(2): 435-438.

    Shao Shuangyun, Xu Nan. Optical three-dimensional profilometry based on modulation ratio[J]. Chinese J Lasers, 2009, 36(2): 435-438.

[16] Legarda-Sa R, Bothe T, Ju W P. Accurate procedure for the calibration of a structured light system[J]. Opt Eng, 2004, 43(2): 464-471.

[17] 陈会, 密保秀, 高志强. 基于畸变规律的三维结构光测量系统标定[J]. 光学学报, 2013, 33(12): 1215002.

    Chen Hui, Mi Baoxiu, Gao Zhiqiang. Calibration of 3D structured light measurement system based on the properties of lens distortion[J]. Acta Optica Sinica, 2013, 33(12): 1215002.

[18] Su X Y, Song W Z, Cao Y P, et al.. Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry[J]. Opt Eng, 2004, 43(3): 708-712.

[19] 孙军华, 刘震, 张广军, 等. 基于柔性立体靶标的摄像机标定[J]. 光学学报, 2009, 29(12): 3433-3439.

    Sun Junhua, Liu Zhen, Zhang Guangjun, et al.. Camera calibration based on flexible 3D target[J]. Acta Optica Sinica, 2009, 29(12): 3433-3439.

[20] Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[21] 苏显渝, 李继陶. 信息光学[M]. 北京: 科学出版社, 2013.

[22] Zhong M, Su X Y, Chen W J, et al.. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning[J]. Opt Express, 2014, 22(26): 31620-31634.

[23] 王能, 赵红立, 琚生根, 等. 一种改进的Canny边缘检测自适应算法[J]. 四川大学学报: 自然科学版, 2014, 51(3): 479-482.

    Wang Neng, Zhao Hongli, Ju Shenggen, et al.. An improved adaptive Canny edge detection algorithm[J]. Journal of Sichuan University: Natural Science Edition, 2014, 51(3): 479-482.

卢明腾, 苏显渝, 曹益平, 游志胜, 荆海龙. 调制度测量轮廓术中高度映射与相机同时标定的方法[J]. 光学学报, 2016, 36(6): 0612002. Lu Mingteng, Su Xianyu, Cao Yiping, You Zhisheng, Jing Hailong. A Method of Both Height Mapping and Camera Calibration at the Same Time in Modulation Measuring Profilometry[J]. Acta Optica Sinica, 2016, 36(6): 0612002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!