光学 精密工程, 2015, 23 (5): 1387, 网络出版: 2015-06-11   

MEMS矢量水听器封装的流体-结构相互作用

Fluid-structure interaction of MEMS vector hydrophone in packing processing
作者单位
1 中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051
2 中北大学 电子测试技术重点实验室, 山西 太原 030051
3 北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051
摘要
针对水听器的频响曲线会在透声帽谐振频率处出现共振峰, 使水听器频响曲线失真, 工作频带变窄等问题。本文考虑水听器的工作环境, 通过研究流体-结构相互作用对透声帽谐振频率进行了分析。首先理论分析流体对结构模态频率的影响, 分析显示在流体作用下透声帽谐振频率会降低。然后利用LMS Virtual.lab Acoustics有限元软件对空气中和液体中的MEMS矢量水听器芯片和透声帽进行了模态分析; 并利用振动平台和驻波管对有否进行透声帽封装的MEMS矢量水听器进行了测试以验证上述分析。验证结果显示: 透声帽在水中的实际一阶谐振频率为550 Hz, 与仿真结果非常吻合, 表明该谐振频率可使水听器工作频带变窄。实验结果表明: 对水听器中透声帽的流固耦合模态分析非常必要, 通过准确地获得透声帽在实际状态下的固有频率并预测水听器的接收频响特性, 可为改进封装结构提供理论依据, 为进一步优化水听器奠定基础。
Abstract
Some resonant peaks in the frequency response curve of a hydrophone usually appear at the resonant frequencies of the sound-transparent cap, which make the frequency response curve distorted and the working band narrowed. Thereby, it is necessary to forecast the resonant frequencies of the sound-transparent cap accurately. According to the working environment of a MEMS Hydrophone, this paper analyzes the resonant frequencies of the sound-transparent cap based on the Fluid-Structure Interaction(FSI). Firstly, the effect of fluid action on the FSI of the sound-transparent cap was analyzed in theory, and it shows that the resonant frequencies of the sound-transparent cap will be lowered by the fluid action.Then, the vacuum mode and coupling mode of the chip and sound-transparent cap were simulated by LMS V irtual.lab, respectively. Finally, the MEMS vector hydrophones with and without sound-transparent cap packaging were tested in a shaking table and a standing wave tube to verify the above analysis. The results indicate that the actual first-order resonant frequency of sound-transparent cap in water is 550 Hz, which is the same as the simulation and makes the working frequency band of hydrophone narrowed. The results show that the research on coupling modal analysis of sound-transparent cap and predicting the properties of the hydrophone accurately would provide the guarantee for further optimization and improvement of the hydrophones.
参考文献

[1] 杨松涛.深水矢量水听器的研制[D].哈尔滨: 哈尔滨工程学, 2010.

    YANG S T.The research of deep-water vector hydrophone [D].Harbin: Harbin Engineering University, 2010. (in Chinese)

[2] 陈德勇, 曹明威, 王军波, 等.谐振式MEMS压力传感器的制作及圆片级真空封装[J].光学 精密工程, 2014, 22(5): 1235-1242.

    CHEN D Y, CAO M W, WANG J B, et al.. Fabrication and wafer-level vacuum packaging of MEMS resonant pressure sensor [J]. Opt. Precision Eng., 2014, 22(5): 1235-1242. (in Chinese)

[3] 李增刚, 詹福良.Virtual.lab Acoustics声学仿真计算高级应用实例[M].北京: 国防工业出版社, 2013.

    LI Z G, ZHAN F L. Virtual.lab Acoustic Simulation Calculation Application [M]. Beijing: National Defense Industry Press, 2013. (in Chinese)

[4] JEONG K H, LEE G M, KIMET T W.Free vibration analysis of a circular plate partially in contact with a liquid [J].Journal of Sound and Vibration, 2009, 324(1/2): 194-208.

[5] ALDO M, AGNESE C, SALVATORE P, et al.. Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements [J]. Smart Materials and Structures, 2012, 21(12): 1-7.

[6] KOZLOVSKY Y.Vibration of plates in contact with viscous fluid: extension of Lambs model [J]. Journal of Sound and Vibration, 2009, 326(1/2): 332-339.

[7] TIKESWAR N, ELLEN K L, SUSAN C M.Dynamic response of a cantilever in liquid near a solid wall [J].Sensors and Actuators: A, 2003, 102(3): 240-254.

[8] 伞海生, 宋子军, 王翔, 等.适用于恶劣环境的MEMS压阻式压力传感器[J].光学 精密工程, 2012, 20(3): 550-555.

    SAN H S, SONG Z J, WANG X, et al.. Piezoresistive pressure sensor for harsh environments [J].Opt. Precision Eng., 2012, 20(3): 550-555. (in Chinese)

[9] 王帆, 董景新, 赵淑明.硅微振梁式加速度计的温度检测及闭环控制[J].光学 精密工程, 2014, 22(6): 1590-1597.

    WANG F, DONG J X, ZHAO SH M. Temperature measurement and close-loop control of silicon resonant accelerometer [J]. Opt. Precision Eng., 2014, 22(6): 1590-1597. (in Chinese)

[10] 李振, 张国军, 薛晨阳, 等.MEMS仿生矢量水听器封装结构的设计与研究[J].传感技术学报, 2013, 26(1): 25-30.

    LI ZH, ZHANG G J, XUE CH Y, et al.. The design and research of encapsulation on MEMS bionic vector hydrophone [J]. Chinese Journal of Sensor and Actuators. 2013, 26(1): 25-30. (in Chinese)

[11] 居荣初, 曾心传.弹性结构与液体的耦联振动理论[M].北京: 地震出版社, 1983.

    JU R CH, ZENG X CH.Coupling Vibration Theory Between Elastic Structure and Liquid [M]. Beijing: Seismological Press, 1983. (in Chinese)

[12] 陈尚.硅微仿生矢量水声传感器研究[D].太原: 中北大学, 2008.

    CHEN SH. Research of MEMS Bionic Vector Hydrophone Based on Silicon [D]. Taiyuan: North University of China, 2008. (in Chinese)

[13] 费腾.矢量水听器校准装置[J].声学技术, 2005(增刊): 289-291.

    FEI T. The vector hydrophone calibration device [J]. Technical Acoustics, 2005(supplement): 289-291. (in Chinese)

刘梦然, 简泽明中, 张国军, 张文栋. MEMS矢量水听器封装的流体-结构相互作用[J]. 光学 精密工程, 2015, 23(5): 1387. 刘梦然, 简泽明中, 张国军, 张文栋. Fluid-structure interaction of MEMS vector hydrophone in packing processing[J]. Optics and Precision Engineering, 2015, 23(5): 1387.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!