红外与激光工程, 2020, 49 (1): 0113005, 网络出版: 2020-06-08   

基于C-TOF成像的位姿测量与地物目标识别技术研究

Research on pose measurement and ground object recognition technology based on C-TOF imaging
作者单位
1 北京控制工程研究所, 北京 100080
2 中国空间技术研究院, 北京 100094
摘要
深空探测器的功耗和体积有限, 任务工况多样, 与低轨道地球探测器相比, 深空探测器对导航敏感器的任务能力提出了更高的需求。提出了一种基于飞行时间成像的快速位姿测量和地物目标识别技术。为了在保证位姿测量精度的前提下满足对位姿测量时间性能的需求, 提出了一种基于深度信息的动态尺度估计方法。该方法提升了物方多尺度变化条件下点云配准的时间稳定性, 平均配准时间缩短60%以上, 平均配准精度约为0.04 m。为了满足多尺度、多形态地物目标识别的需求, 使用了基于轻量化深度神经网络, 可根据场景深度信息进行地物检测。结果表明, 该方法可对地物特征进行快速感知, 在真实场景中的准确率达到70%以上。
Abstract
Deep space probes have limited power consumption and volume, and have diverse mission conditions. Compared with low-orbit earth probes, deep space probes have higher requirements for the mission capabilities of navigation sensors. This paper proposed a fast pose measurement and ground object recognition technology based on time-of-flight imaging. In order to meet the time requirements of pose measurement under the premise of ensuring the accuracy of pose measurement, a dynamic scale estimation method based on depth information was proposed. This method improved the temporal stability of point cloud registration under multi-scale object-side changes. The average registration time was reduced by more than 60% and the average registration accuracy was about 0.04 m. In order to meet the needs of multi-scale and multi-morph object recognition, a light-weight deep neural network was used to detect ground objects based on scene depth information. The results show that this method can quickly perceive the features of ground features, and the accuracy rate is more than 70% in real scenes.
参考文献

[1] Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006, 312(5778): 1350-1353.

    Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006, 312(5778): 1350-1353.

[2] Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011, 333(6046): 1125-1128.

    Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011, 333(6046): 1125-1128.

[3] Tsuda Y, Yoshikawa M, Abe M, et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91: 356-362.

    Tsuda Y, Yoshikawa M, Abe M, et al. System design of the Hayabusa 2-Asteroid sample return mission to 1999 JU3[J]. Acta Astronautica, 2013, 91: 356-362.

[4] Tsuda Y, Yoshikawa M, Saiki T, et al. Hayabusa2-Sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica, 2019, 156: 387-393.

    Tsuda Y, Yoshikawa M, Saiki T, et al. Hayabusa2-Sample return and kinetic impact mission to near-earth asteroid Ryugu[J]. Acta Astronautica, 2019, 156: 387-393.

[5] Titterton D H. Military Laser Technology and Systems[M]. US: Artech House, 2015.

    Titterton D H. Military Laser Technology and Systems[M]. US: Artech House, 2015.

[6] 卢纯青, 宋玉志, 武延鹏, 等. 基于C-TOF计算成像的三维信息获取与误差分析[J]. 红外与激光工程, 2018, 47(10): 1041004.

    卢纯青, 宋玉志, 武延鹏, 等. 基于C-TOF计算成像的三维信息获取与误差分析[J]. 红外与激光工程, 2018, 47(10): 1041004.

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. 3D information acquisition and error analysis based on C-TOF computational imaging[J]. Infrared and Laser Engineering, 2018, 47(10): 1041004. (in Chinese)

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. 3D information acquisition and error analysis based on C-TOF computational imaging[J]. Infrared and Laser Engineering, 2018, 47(10): 1041004. (in Chinese)

[7] 卢纯青, 宋玉志, 武延鹏, 等. 基于相关法飞行时间三维感知的误差机理研究[J]. 红外与激光工程, 2019, 48(11): 1113002.

    卢纯青, 宋玉志, 武延鹏, 等. 基于相关法飞行时间三维感知的误差机理研究[J]. 红外与激光工程, 2019, 48(11): 1113002.

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. Theoretical investigation on correlating time-of-flight 3D sensation error[J]. Infrared and Laser Engineering, 2019, 48(11): 1113002. (in Chinese)

    Lu Chunqing, Song Yuzhi, Wu Yanpeng, et al. Theoretical investigation on correlating time-of-flight 3D sensation error[J]. Infrared and Laser Engineering, 2019, 48(11): 1113002. (in Chinese)

[8] Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 3212-3217.

    Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. IEEE, 2009: 3212-3217.

[9] Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2): 119-152.

    Zhang Z. Iterative point matching for registration of free-form curves and surfaces[J]. International Journal of Computer Vision, 1994, 13(2): 119-152.

[10] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001: 145-152.

    Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3-D Digital Imaging and Modeling, 2001. Proceedings. Third International Conference on. IEEE, 2001: 145-152.

[11] Biber P, Strasser W. The normal distributions transform: A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 3: 2743-2748.

    Biber P, Strasser W. The normal distributions transform: A new approach to laser scan matching[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 3: 2743-2748.

[12] 卢纯青, 刘兴潭, 武延鹏, 等. 飞行时间成像系统的数字仿真技术[J]. 空间控制技术与应用, 2019, 45(2): 56-66.

    卢纯青, 刘兴潭, 武延鹏, 等. 飞行时间成像系统的数字仿真技术[J]. 空间控制技术与应用, 2019, 45(2): 56-66.

    Lu Chunqing, Liu Xingtan, Wu Yanpeng, et al. Computer simulation technology of time-of-flight imaging system[J]. Aerospace Control and Application, 2019, 45(2): 56-66. (in Chinese)

    Lu Chunqing, Liu Xingtan, Wu Yanpeng, et al. Computer simulation technology of time-of-flight imaging system[J]. Aerospace Control and Application, 2019, 45(2): 56-66. (in Chinese)

[13] Yue X, Wu B, Seshia S A, et al. A lidar point cloud generator: from a virtual world to autonomous driving[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. ACM, 2018: 458-464.

    Yue X, Wu B, Seshia S A, et al. A lidar point cloud generator: from a virtual world to autonomous driving[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval. ACM, 2018: 458-464.

[14] Wu B, Wan A, Yue X, et al. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893.

    Wu B, Wan A, Yue X, et al. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893.

[15] Wu B, Zhou X, Zhao S, et al. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382.

    Wu B, Zhou X, Zhao S, et al. Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382.

[16] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

    Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

卢纯青, 杨孟飞, 武延鹏, 梁潇. 基于C-TOF成像的位姿测量与地物目标识别技术研究[J]. 红外与激光工程, 2020, 49(1): 0113005. Lu Chunqing, Yang Mengfei, Wu Yanpeng, Liang Xiao. Research on pose measurement and ground object recognition technology based on C-TOF imaging[J]. Infrared and Laser Engineering, 2020, 49(1): 0113005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!