人工晶体学报, 2020, 49 (8): 1494, 网络出版: 2020-11-11   

中红外非线性光学晶体CdSiP2的合成与生长

Synthesis and Growth of Mid-infrared Nonlinear Optical Crystal CdSiP2
作者单位
山东大学晶体材料国家重点实验室, 晶体材料研究所, 济南 250100
摘要
本文以P, Si, Cd为原料采用双温区法合成出140 g的高纯CdSiP2多晶料锭, 分别采用自发形核和施加籽晶的垂直Bridgman法生长出12 mm×40 mm和15 mm×50 mm优质CdSiP2单晶体。所生长的晶体中无宏观散射颗粒, (004)面的单晶摇摆曲线的半峰宽为40″。透过光谱表明CdSiP2晶体在2~6.5 μm的透过率达到57%, 接近其理论最大值。辉光放电质谱检测到晶体中含有少量的Fe、Cr、Mn、Ti等过渡金属。电子顺磁共振波谱检测到Fe+和Mn2+的存在, 这些杂质可能会引起晶体在近红外波段的光学吸收。
Abstract
Polycrystalline ingots were synthesized by two-temperature zone method using P, Si, and Cd as the initial materials. Single crystals CdSiP2 with the size of 12 mm×40 mm and 15 mm×50 mm were successfully grown by self-seeding and seeded vertical Bridgman technique, respectively. The full width at half-maximum of the XRD rocking curve on (004) plane is 40″. The average transmittance of CdSiP2 crystal is 57% at 2-6.5 μm, which is close to its theoretical maximum. A small amount of transition metals, such as Fe, Cr, Mn and Ti, were detected in crystal by glow discharge mass spectrometry. The presence of Fe+ and Mn2+ was determined by electron paramagnetic resonance, which may cause optical absorption of the crystal in the near infrared band.
参考文献

[1] 张国栋, 王善朋, 陶绪堂.红外非线性光学晶体研究进展[J].人工晶体学报, 2012, 41(S1): 17-23.

[2] 贾 宁, 王善朋, 陶绪堂.中远红外非线性光学晶体研究进展[J].物理学报, 2018, 67(24): 244203.

[3] 李春霄, 郭扬武, 李 壮, 等.新型可实用化红外非线性光学晶体研究进展[J].人工晶体学报, 2019,48(10): 1799-1813.

[4] 杨春晖, 马天慧, 朱崇强, 等.中远红外及太赫兹波段非线性晶体硒化镓[J].硅酸盐学报, 2017,48(10): 1402-1409.

[5] 王振友, 吴海信.8~12 μm长波红外非线性晶体研究进展[J].人工晶体学报, 2019,48(1): 34-46.

[6] 康 彬, 窦云巍, 唐明静, 等.水平梯度冷凝法生长优质ZnGeP2单晶与性能表征[J].硅酸盐学报,2016,44(4): 503-507.

[7] Petrov V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals[J]. Progress in Quantum Electronics, 2015, 42: 1-106.

[8] Kemlin V, Brand P, Boulanger B. Phase-matching properties and refined Sellmeier equations of the new nonlinear infrared crystal CdSiP2[J]. Optical Letters, 2011, 36(10): 1800-1802.

[9] Borshchevskii A S, Goryunova N A, Kesamanly F P, et al. Semiconducting AⅡBⅣCⅤ2 compounds[J]. Phys. Status Solidi, 1967, 21(1): 9-55.

[10] Spring-Thorpe A J, Pamplin B R. Growth of some single crystal II-IV-V2 semiconducting compounds[J]. J. Crystal Growth, 1968, 3-4: 313-316.

[11] Zawilski K T, Schunemann P G, Pollak T C, et al. Growth and characterization of large CdSiP2 single crystals[J]. Journal of Crystal Growth, 2010, 312: 1127-1132.

[12] Petrov V, Schunemann P G, Zawilski K T, et al. Noncritical singly resonant optical parametric oscillator operation near 6.2 μm based on a CdSiP2 crystal pumped at 1064 nm[J].Optics Letters, 2009, 34(16): 2399-2401.

[13] Peremans A, Lis D, Cecchet F, Schunemann P G, et al. Synchronously pumped at 1064 nm OPO based on CdSiP2 for generation of high power picosecond pulses in the mid-infrared near 6.4 μm[J]. Powers P E, editor, Nonlinear Frequency Generation And Conversion: Materials, Devices, And Applications Ix, 2010.

[14] Zhang Z, Reid D T, Chaitanaya Kumar S, et al. Femtosecond-laser pumped CdSiP2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm[J]. Optics Letters, 2013, 38(23): 5110-5113.

[15] Chaitanaya Kumar S, Krauth J, Steinmann A, et al. High-power femtosecond mid-infrared optical parameteric oscillator at 7 μm based on CdSiP2[J]. Optics Letters, 2015, 40(7): 1398-1401.

[16] Chaitanaya Kumar S, Schunemann P G, Zawilski K T, et al. Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP2[J]. Journal of the Optical Society of America B, 2016, 33(11): D44-D56.

[17] Cole B, Goldberg L, Chinn S, et al. Compact and efficient mid-IR OPO source pumped by a passively Q-switched Tm∶YAP laser[J]. Optics Letters, 2018, 43(5): 1099-1102.

[18] Zhang Guodong, Tao Xutang, Ruan Huapeng, et al. Growth of CdSiP2 single crystals by self-seeding vertical Bridgman method[J]. Journal of Crystal Growth, 2012, 340(1): 197-201.

[19] Zhang Guodong, Ruan Huapeng, Zhang Xiang, et al. Vertical Bridgman growth and optical properties of CdSiP2 crystals[J]. CrystEngComm, 2013, 15(21): 4255-4260.

[20] 张国栋, 李春龙, 王善朋, 等.CdSiP2晶体中光散射颗粒的研究[J].无机材料学报, 2014, 8: 855-858.

[21] Zhang Guodong, Wei Lei, Zhang Longzhen, et al. Growth and polarized Raman spectroscopy investigation of single crystal CdSiP2: Experimental measurements and ab initio calculations[J]. Journal of Crystal Growth, 2017, 473: 28.

[22] Kui Cheng, Guodong Zhang, Zhongjun Zhai, et al. Synthesis of polycrystalline CdSiP2 with two-temperature zone method[J]. Journal of Crystal Growth, 2020, 529: 125271.

[23] Giles N C, Halliburton L E, Yang S, et al. Optical and EPR study of point defects in CdSiP2crystals[J]. Journal of Crystal Growth, 2010, 312(8): 1133-1137.

[24] Scherrer E M, Kananen B E, Golden E M, et al. Defect-related optical absorption bands in CdSiP2 crystals[J]. Optical Materials Express, 2017, 7(3): 658-664.

张国栋, 程奎, 张龙振, 陶绪堂. 中红外非线性光学晶体CdSiP2的合成与生长[J]. 人工晶体学报, 2020, 49(8): 1494. ZHANG Guodong, CHENG Kui, ZHANG Longzhen, TAO Xutang. Synthesis and Growth of Mid-infrared Nonlinear Optical Crystal CdSiP2[J]. Journal of Synthetic Crystals, 2020, 49(8): 1494.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!