光子学报, 2016, 45 (9): 0912004, 网络出版: 2016-10-19   

晶硅太阳电池原位光老化及热致输运机理

Light Soaking in Situ and Thermally Induced Transport Mechanism of Crystalline Silicon Solar Cell
作者单位
1 中国科学院上海微系统与信息技术研究所, 上海 200050
2 中国科学院大学, 北京 100039
摘要
为研究晶体硅太阳电池在标准模拟光条件下的输出特性变化规律和电池内部载流子输运特性, 采用原位光老化技术对被测电池进行光照处理, 按标准测试实验流程测量电池的伏安特性及光谱响应等参量, 发现原位光老化后太阳电池伏安特性各项参量衰减, 导致电池效率降低; 短波段光谱响应微量下降, 是由于原位光老化过程中电池表面产生极微量的面缺陷导致经过硅表面的微量载流子被复合; 而长波段响应明显降低, 是由于晶硅内大量体缺陷被激活导致长波载流子在经过硅材料内部时被复合.随后将光老化后电池退火并测量比对电池各项特性参量, 结果表明, 退火对光老化后电池内部深层体缺陷具有较好的修复功能, 但对浅层面缺陷没有修复功能, 最终造成电池伏安特性参量和光谱响应只得到部分恢复.
Abstract
In order to investigate the output variation of the silicon solar cell under the solar simulator and its internal carrier transport properties, light soaking in situ of crystalline silicon solar cell technology was conducted before the standard test which measures the cell's current-voltage characteristics, spectral response and other parameters. The results show that the attenuation of current-voltage characteristics results in reduced efficiency. The short wavelength spectral response of solar cell is decreased slightly after light soaking in situ. The reason is that the surface of the cell generates a very small amount of defect during the light soaking process whichleads to slight decrease of the carrier recombination. The significant decrease of the spectral response during the long wavelength is due to a large number of the bulk defects being activated, which results in the long-wave carrier recombination when it passes through the silicon.The solar cell was then annealed and tested after light soaking. The results show that annealing has a good effect on the recovery of bulk defect deep inside the cell. There is a partial recovery of bulk defects after annealing while the surface defects are not recovered, which leads to the incomplete recovery of current-voltage characteristics and spectral response.
参考文献

[1] 孙皓. 太阳电池及相关测试设备的计量方法研究[D]. 杭州:中国计量科学研究院, 2010.

    SUN Hao. Research on calibration methods of solar cells and related testing equipments[D]. Hangzhou: National Institute of Metrology, 2010.

[2] 周健, 李红飞, 刘毓成,等. 基于改进型双二级管模型的户外模组电量预测技术研究[J]. 光子学报, 2013, 42(9): 1077-1082.

    ZHOU Jian, LI Hong-fei, LIU Yu-cheng, et al. A comprehensive approach to modeling and simulation of photovoltaic module under natural environment[J]. Acta Photonica Sinica, 2013, 42(9): 1077-1082.

[3] SCHMIDT J, HEZEL R. Light-induced degradation in CZ silicon solar cells: fundamental understanding and strategies for its avoidance[C]. 12th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge: 2002.

[4] 李秀杰, 韩培德, 杨毅彪,等. 基于光子晶体异质结的高效太阳能电池反射器研究[J]. 光子学报, 2010, 39(10): 1786-1789.

    LI Xiu-jie, HAN Pei-de, YANG Yi-biao, et al. Reflector of solar cells based on photonic crystal heterostructures[J]. Acta Photonica Sinica, 2010, 39(10): 1786-1789.

[5] FISCHER H, PSCHUNDER W. Investigation of photon and thermal induced changes in silicon solar cells[C]. Proceedings of the 10th IEEE PVSC, New York, 1973: 404-411.

[6] SCHMIDT J, CUEVAS A, REIN S, et al. Impact of light-induced recombination centres on the current-voltage characteristic of Czochralski silicon solar cells[J]. Progress in Photovoltaics Research and Applications, 2001, 9(4): 249-255.

[7] SCHUTZ-KUCHLY T, DUBOIS S, VEIRMAN J,et al. Light-induced degradation in compensated n-type Czochralski silicon solar cells[J]. Physica Status Solidi, 2011, 208(3): 572-575.

[8] BOTHE K, SCHMIDT J, HEZEL R. Effective reduction of the metastable defect concentration in boron-doped Czochralski silicon for solar cells[C]. Photovoltaic Specialists Conference Record of the 29th IEEE, 2002: 194-197.

[9] BASNYAT P, SOPORI B, DEVAYAJANAM S, et al. Experimental study to separate surface and bulk contributions of light-induced degradation in crystalline silicon solar cells[J]. Emerging Materials Research, 2015, 4(2): 239-246.

[10] VORONKOV V, FALSTER R. Latent complexes of interstitial boron and oxygen dimers as a reason for degradation of silicon-based solar cells[J]. Journal of Applied Physics, 2010, 107(5): 053509.

[11] 任驹, 郭文阁, 郑建邦. 基于P-N结的太阳能电池伏安特性的分析与模拟[J]. 光子学报, 2006, 35(2): 171-175.

    REN Ju, GUO Wen-ge, ZHENG Jian-bang et al. Analysis and simulation of solar cells′ V-A properties based on P-N junction[J]. Acta Photonica Sinica, 2006, 35(2): 171-175.

[12] GREEN M A. Silicon solar cells: advanced principles &practice[M]. Sydney, N.S.W., Australia: Centre for Photovoltaic Devices and Systems, 1995.

[13] SOPORI B, BASNYAT P, DEVAYAJANAM S, et al. Understanding light-induced degradation of c-Si solar cells[C]. Photovoltaic Specialists Conference Record of the 38th IEEE, 2012.

[14] 彭小静, 徐林, 刘锋,等. 光谱及太阳电池各参量与填充因子之关系[J]. 太阳能学报, 2009, 30(7): 878-882.

    PENG Xiao-jing, XU Lin, LIU Feng, et al. Study the effects of spectrum and solar cell parameter on fill factor[J]. Acta Energiae Solaris Sinica, 2009, 30(7): 878-882.

[15] LIM B, ROUGIEUX F, MACDONALD D, et al. Generation and annihilation of boron-oxygen-related recombination centers in compensated p-and n-type silicon[J]. Journal of Applied Physics, 2010, 108(10): 103722-103722-9.

[16] MEEMONGKOLKIAT V. Development of high efficiency monocrystalline Si solar cells through improved optical and electrical confinement[J]. Dissertations & Theses -Gradworks, 2008.

[17] 周健, 卞洁玉, 李红飞,等. 晶体硅光伏电池的标准测试[J]. 光学精密工程, 2014, 22(6): 1517-1523.

    ZHOU Jian, BIAN Jie-yu, LI Hong-fei, et al. Standard measurement of crystal silicon solar cells[J]. Optics and Precision Engineering, 2014, 22(6): 1517-1523.

[18] 熊绍珍. 太阳能电池基础与应用[M]. 北京: 科学出版社, 2009: 105-106.

[19] LAN D, GREEN M A. Extended spectral response analysis of conventional and front surface field solar cells[J]. Solar Energy Materials & Solar Cells, 2015, 134(134): 346-350.

[20] SAAD M, KASSIS A. Effect of interface recombination on solar cell parameters[J]. Solar Energy Materials & Solar Cells, 2003, 79(4): 507-517.

叶金晶, 周健, 卞洁玉, 孙谦晨. 晶硅太阳电池原位光老化及热致输运机理[J]. 光子学报, 2016, 45(9): 0912004. YE Jin-jing, ZHOU Jian, BIAN Jie-yu, SUN Qian-chen. Light Soaking in Situ and Thermally Induced Transport Mechanism of Crystalline Silicon Solar Cell[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0912004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!