光学学报, 2017, 37 (12): 1212001, 网络出版: 2018-09-06   

光频扫描干涉绝对测距漂移误差与补偿方法研究 下载: 895次

Study of Drift Error and Its Compensation Method in Absolute Distance Measurement by Optical Frequency Scanning Interferometry
作者单位
天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
引用该论文

张雅雅, 郭寅, 任永杰, 尚岳, 刘洋, 邾继贵. 光频扫描干涉绝对测距漂移误差与补偿方法研究[J]. 光学学报, 2017, 37(12): 1212001.

Yaya Zhang, Yin Guo, Yongjie Ren, Yue Shang, Yang Liu, Jigui Zhu. Study of Drift Error and Its Compensation Method in Absolute Distance Measurement by Optical Frequency Scanning Interferometry[J]. Acta Optica Sinica, 2017, 37(12): 1212001.

参考文献

[1] Fox-Murphy A F, Howell D F, Nickerson R B, et al. . Frequency scanned interferometry (FSI): the basis of a survey system for ATLAS using fast automated remote interferometry[J]. Nuclear Instruments & Methods in Physics Research, 1996, 383(1): 229-237.

    Fox-Murphy A F, Howell D F, Nickerson R B, et al. . Frequency scanned interferometry (FSI): the basis of a survey system for ATLAS using fast automated remote interferometry[J]. Nuclear Instruments & Methods in Physics Research, 1996, 383(1): 229-237.

[2] Coe P A, Howell D F, Nickerson R B. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science & Technology, 2004, 15(11): 2175-2187.

    Coe P A, Howell D F, Nickerson R B. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment[J]. Measurement Science & Technology, 2004, 15(11): 2175-2187.

[3] Gibson S M, Coe P A, Mitra A, et al. Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry[J]. Optics & Lasers in Engineering, 2005, 43(7): 815-831.

    Gibson S M, Coe P A, Mitra A, et al. Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry[J]. Optics & Lasers in Engineering, 2005, 43(7): 815-831.

[4] Gibson SM, Dehchar SM, HortonK, et al. A novel method for ATLAS FSI alignment based on rapid, direct phase monitoring[C]. Hamburg: 11th International Workshop on Accelerator Alignment, 2012: 13- 17.

    Gibson SM, Dehchar SM, HortonK, et al. A novel method for ATLAS FSI alignment based on rapid, direct phase monitoring[C]. Hamburg: 11th International Workshop on Accelerator Alignment, 2012: 13- 17.

[5] Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light[J]. Applied Optics, 1986, 25(17): 2976-2980.

    Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light[J]. Applied Optics, 1986, 25(17): 2976-2980.

[6] Kikuta H, Iwata K, Nagata R. Absolute distance measurement by wavelength shift interferometry with a laser diode: some systematic error sources[J]. Applied Optics, 1987, 26(9): 1654-1660.

    Kikuta H, Iwata K, Nagata R. Absolute distance measurement by wavelength shift interferometry with a laser diode: some systematic error sources[J]. Applied Optics, 1987, 26(9): 1654-1660.

[7] Suematsu M, Takeda M. Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis[J]. Applied Optics, 1991, 30(28): 4046-4055.

    Suematsu M, Takeda M. Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis[J]. Applied Optics, 1991, 30(28): 4046-4055.

[8] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Applied Optics, 2007, 46(13): 2394-2400.

    Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Applied Optics, 2007, 46(13): 2394-2400.

[9] 邓忠文, 刘志刚, 陶龙, 等. 新型可调谐外腔半导体激光器光频扫描干涉测距方法[J]. 西安交通大学学报, 2013, 47(5): 104-109.

    邓忠文, 刘志刚, 陶龙, 等. 新型可调谐外腔半导体激光器光频扫描干涉测距方法[J]. 西安交通大学学报, 2013, 47(5): 104-109.

    Deng Zhongwen, Liu Zhigang, Tao Long, et al. Novel frequency scanned interferometry absolute distance measurement by tunable external-cavity diode laser[J]. Journal of Xi'an Jiaotong University, 2013, 47(5): 104-109.

    Deng Zhongwen, Liu Zhigang, Tao Long, et al. Novel frequency scanned interferometry absolute distance measurement by tunable external-cavity diode laser[J]. Journal of Xi'an Jiaotong University, 2013, 47(5): 104-109.

[10] Deng Z, Liu Z, Li B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 2015, 22(5): 724-730.

    Deng Z, Liu Z, Li B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping[J]. Optical Review, 2015, 22(5): 724-730.

[11] 刘哲, 刘志刚, 邓忠文, 等. 扫频干涉测距光频率非线性阶次跟踪抑制方法[J]. 光学学报, 2016, 36(1): 0112003.

    刘哲, 刘志刚, 邓忠文, 等. 扫频干涉测距光频率非线性阶次跟踪抑制方法[J]. 光学学报, 2016, 36(1): 0112003.

    Liu Zhe, Liu Zhigang, Zheng Zhongwen, et al. Suppression of nonlinear frequency sweep in frequency sweeping interferometer based on order tracking technique[J]. Acta Optica Sinica, 2016, 36(1): 0112003.

    Liu Zhe, Liu Zhigang, Zheng Zhongwen, et al. Suppression of nonlinear frequency sweep in frequency sweeping interferometer based on order tracking technique[J]. Acta Optica Sinica, 2016, 36(1): 0112003.

[12] 时光, 张福民, 曲兴华, 等. 高分辨率调频连续波激光绝对测距研究[J]. 物理学报, 2014, 63(18): 184209.

    时光, 张福民, 曲兴华, 等. 高分辨率调频连续波激光绝对测距研究[J]. 物理学报, 2014, 63(18): 184209.

    Shi Guang, Zhang Fumin, Qu Xinghua, et al. Absolute distance measurement by high resolution frequency mo dulated continuous wave laser[J]. Acta Physica Sinica, 2014, 63(18): 184209.

    Shi Guang, Zhang Fumin, Qu Xinghua, et al. Absolute distance measurement by high resolution frequency mo dulated continuous wave laser[J]. Acta Physica Sinica, 2014, 63(18): 184209.

[13] Bechstein K H, Fuchs W. Absolute interferometric distance measurements applying a variable synthetic wavelength[J]. Journal of Optics, 1998, 29(3): 179-182.

    Bechstein K H, Fuchs W. Absolute interferometric distance measurements applying a variable synthetic wavelength[J]. Journal of Optics, 1998, 29(3): 179-182.

[14] Schneider R, Thuermel P, Stockmann M. Distance measurement of moving objects by frequency modulated laser radar[J]. Optical Engineering, 2001, 40(1): 33-37.

    Schneider R, Thuermel P, Stockmann M. Distance measurement of moving objects by frequency modulated laser radar[J]. Optical Engineering, 2001, 40(1): 33-37.

[15] Swinkels B L, Bhattacharya N. Braat J J M. Correcting movement errors in frequency-sweeping interferometry[J]. Optics Letters, 2005, 30(17): 2242-2244.

    Swinkels B L, Bhattacharya N. Braat J J M. Correcting movement errors in frequency-sweeping interferometry[J]. Optics Letters, 2005, 30(17): 2242-2244.

[16] Yang H J, Nyberg S, Riles K. High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions[J]. Nuclear Instruments & Methods in Physics Research, 2006, 575(3): 395-401.

    Yang H J, Nyberg S, Riles K. High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions[J]. Nuclear Instruments & Methods in Physics Research, 2006, 575(3): 395-401.

[17] Kakuma S, Katase Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes[J]. Optical Review, 2012, 19(6): 376-380.

    Kakuma S, Katase Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes[J]. Optical Review, 2012, 19(6): 376-380.

[18] Kakuma S. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity[J]. Optical Review, 2017, 24(1): 39-46.

    Kakuma S. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity[J]. Optical Review, 2017, 24(1): 39-46.

[19] Martinez J J, Campbell M A, Warden M S, et al. Dual-sweep frequency scanning interferometry using four wave mixing[J]. Photonics Technology Letters IEEE, 2015, 27(7): 733-736.

    Martinez J J, Campbell M A, Warden M S, et al. Dual-sweep frequency scanning interferometry using four wave mixing[J]. Photonics Technology Letters IEEE, 2015, 27(7): 733-736.

[20] Zheng J. Analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 2006, 45(16): 3681-3687.

    Zheng J. Analysis of optical frequency-modulated continuous-wave interference[J]. Applied Optics, 2006, 45(16): 3681-3687.

[21] 陶龙, 刘志刚, 吕涛, 等. 频率扫描干涉仪漂移误差正反向扫描补偿法[J]. 光学学报, 2014, 34(2): 0212002.

    陶龙, 刘志刚, 吕涛, 等. 频率扫描干涉仪漂移误差正反向扫描补偿法[J]. 光学学报, 2014, 34(2): 0212002.

    Tao Long, Liu Zhigang, Lü Tao, et al. Drift error compensation method of frequency sweeping interferometer by consecutive forward and reverse optical frequency scanning[J]. Acta Optica Sinica, 2014, 34(2): 0212002.

    Tao Long, Liu Zhigang, Lü Tao, et al. Drift error compensation method of frequency sweeping interferometer by consecutive forward and reverse optical frequency scanning[J]. Acta Optica Sinica, 2014, 34(2): 0212002.

张雅雅, 郭寅, 任永杰, 尚岳, 刘洋, 邾继贵. 光频扫描干涉绝对测距漂移误差与补偿方法研究[J]. 光学学报, 2017, 37(12): 1212001. Yaya Zhang, Yin Guo, Yongjie Ren, Yue Shang, Yang Liu, Jigui Zhu. Study of Drift Error and Its Compensation Method in Absolute Distance Measurement by Optical Frequency Scanning Interferometry[J]. Acta Optica Sinica, 2017, 37(12): 1212001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!