液晶与显示, 2017, 32 (5): 325, 网络出版: 2017-08-09   

蓝相液晶材料与光子学器件研究进展

Progresses on the researches of blue phase liquid crystal materials and photonic devices
作者单位
华东理工大学 物理系, 上海 200237
摘要
蓝相液晶是一种三维手性自组装软超结构材料, 具有光学各向同性, 选择性反射波长, 快速响应等优秀特性, 无论在显示还是光子器件的应用上都具有良好的发展前景, 吸引了研究人员的大量关注。近十年关于蓝相液晶显示领域的研究与工程或应用发展迅猛, 于此同时催生了其在光子学这个后显示领域的研究。面对来自国际上其他先进国家的竞争与压力, 中国大陆的学者们奋勇迎接, 经过短短数年的发展获得了一批有显示度的成果, 在国内外的优秀期刊上报道了一系列富含学术性和实用性的工作。具备高热稳定性与显著电光调制特性的新型蓝相液晶材料及其光子学器件, 如衍射光栅、相位调制器、透镜、激光以及光衰减器等, 相继被开发出。本文追逐这些前辈留下的脚印, 从材料制备、性能到光子器件设计、应用进行了概括性的回顾, 旨在通过此综述激发出蓝相液晶在非显示光子学应用领域更多的研究灵感; 若能起到进一步促进该领域发展的作用, 笔者将感到幸甚之至!
Abstract
Blue phase liquid crystal, exhibiting optical isotropic, selective reflection and fast response, has attracted a cumulative attention due to its elegant three-dimensional self-organized helical superstructure. Such fantastic properties enable the applications on not merely displays, but the diverse advanced photonic devices. In the recent years, tremendous endeavors were contributed on photonic applications of blue phase liquid crystal in China mainland, ranging from the materials, with excellent thermal stability and significant electro-optical performances, to the devices, such as diffraction phase grating, phase modulator, lens, variable optical attenuator and mirror-less laser, which boost the developments and booms of the relevant researches and industries. Herein, we summarize some representative works, including the preparation and characterization of materials and the design and developments of novel photonic devices, for further inspiring more valuable ideas on blue phase applications beyond display. We will be pleasure if this review can promote the developments of the relevant fields.
参考文献

[1] KIKUCHI H. Liquid crystalline blue phases[M]//KATO T. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin Heidelberg: Springer, 2008: 99-117.

[2] HIGASHIGUCHI K, YASUI K, KIKUCHI H. Direct observation of polymer-stabilized blue phase I structure with confocal laser scanning microscope [J]. J. Am. Chem. Soc., 2008, 130(20): 6326-6327.

[3] ZHENG Z G, WANG H F, ZHU G, et al. Low-temperature-applicable polymer-stabilized blue-phase liquid crystal and its Kerr effect [J]. J. Soc. Inf. Disp., 2012, 20(6): 326-332.

[4] MAO J L, WANG J, FAN H X, et al. Low-voltage and high-transmittance blue-phase liquid crystal display with concave electrode [J]. Liq. Cryst., 2016, 43(4): 535-539.

[5] LI Y, HUANG S J, RONG N, et al. Transmissive and transflective blue-phase LCDs With double-layer IPS electrodes [J]. J. Disp. Technol., 2016, 12(2): 122-128.

[6] DOU H, MA H M, SUN Y B. Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method [J]. Chin. Phys. B, 2016, 25(9): 094221.

[7] MA H M, YANG R X, SUN Y B. The optical threshold and saturation voltage of blue-phase liquid crystal display with uniform operating electric field [J]. Liq. Cryst., 2015, 42(12): 1743-1747.

[8] LI Y F, MA H M, SUN Y B. Biaxial film design for full-colour, wide-view and high-contrast blue phase liquid crystal displays [J]. Liq. Cryst., 2015, 42(1): 46-51.

[9] FAN H X, WANG Q H, CUI J P, et al. Low voltage blue-phase liquid crystal display with triple-penetrating fringe fields [J]. Liq. Cryst., 2015, 42(1): 41-45.

[10] FAN H X, CUI J P, WANG Q H. High transmittance blue-phase liquid crystal display with improved protrusion electrodes [J]. Liq. Cryst., 2015, 42(4): 481-485.

[11] DOU H, MA H M, SUN Y B. Transmittance and reflectance of cholesteric and blue phase liquid crystal [J]. Acta Phys. Sin., 2015, 64(12): 126101.

[12] CHEN C P, LI Y, SU Y K, et al. Transmissive interferometric display with single-layer fabry-pérot filter [J]. J. Disp. Technol., 2015, 11(9): 715-719.

[13] ZHONG E W, NI S B, TAN J, et al. A transflective display using blue phase liquid crystal [J]. J. Disp. Technol., 2014, 10(5): 357-361.

[14] ZHAO Y L, SUN Y B, LI Y F, et al. Optimisation of blue-phase liquid crystal with protrusion [J]. Liq. Cryst., 2014, 41(11): 1583-1594.

[15] TANG P, CUI J P, FAN H X, et al. Blue phase dual-view liquid crystal display based on directional backlight system [J]. J. Soc. Inf. Disp., 2014, 22(12): 652-657.

[16] SUN Y B, ZHAO Y L, LI Y F, et al. Optimisation of in-plane-switching blue-phase liquid crystal display [J]. Liq. Cryst., 2014, 41(5): 717-720.

[17] SUN Y B, ZHAO Y L, LI Y F, et al. A low operating electric field blue-phase liquid crystal display with wedge protrusion [J]. J. Disp. Technol., 2014, 10(9): 797-801.

[18] SUN Y B, LI Y F, ZHAO Y L, et al. A low voltage and continuous viewing angle controllable blue phase liquid crystal display [J]. J. Disp. Technol., 2014, 10(6): 484-487.

[19] LI Y F, SUN Y B, ZHAO Y L, et al. A continuous viewing angle controllable blue phase liquid crystal display [J]. J. Disp. Technol., 2014, 10(10): 827-831.

[20] SU Z F, CHEN Y Q, LU J G, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes [J]. Liq. Cryst., 2013, 40(7): 976-979.

[21] LI P, SUN Y B, ZHAO Y L, et al. High transmittance blue-phase liquid crystal displays with slit-shaped electrode [J]. Liq. Cryst., 2013, 40(10): 1417-1421.

[22] LI P, SUN Y B, WANG Q H. A transflective and viewing angle controllable blue-phase liquid crystal display [J]. Liq. Cryst., 2013, 40(8): 1024-1027.

[23] CUI J P, LI Y, YAN J, et al. Time-multiplexed dual-view display using a blue phase liquid crystal [J]. J. Disp. Technol., 2013, 9(2): 87-90.

[24] ZHOU F, WANG Q H, WU D, et al. Polymer-stabilized blue phase liquid crystal display with slanted wall-shaped electrodes [J]. Chin. Opt. Lett., 2012, 10(2): 002301.

[25] YUAN L, CUI J P, LI D H, et al. Viewing angle switchable blue-phase liquid crystal display with low voltage and high transmittance [J]. J. Soc. Inf. Disp., 2012, 20(12): 692-696.

[26] LIU L W, CUI J P, LI D H, et al. A viewing-angle-controllable blue-phase liquid-crystal display [J]. J. Soc. Inf. Disp., 2012, 20(6): 337-340.

[27] LIANG D, LUO J Y, ZHAO W X, et al. 2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens [J]. J. Disp. Technol., 2012, 8(10): 609-612.

[28] CUI J P, ZHOU F, SONG C Q, et al. Low-voltage and high-transmittance blue-phase liquid-crystal device with slanted electrodes [J]. J. Soc. Inf. Disp., 2012, 20(6): 347-350.

[29] ZHOU F, CUI J P, WANG Q H, et al. A single-cell-gap transflective display using a blue-phase liquid crystal [J]. J. Disp. Technol., 2011, 7(4): 170-173.

[30] WU D, WANG Q H, ZHOU F, et al. Low voltage and high optical efficiency single-cell-gap transflective display using a blue-phase liquid crystal [J]. J. Disp. Technol., 2011, 7(8): 459-462.

[31] SONG C Q, WANG Q H, CUI J P, et al. Low voltage and high transmittance transflective display using polymer-stabilized blue-phase liquid crystal [J]. J. Disp. Technol., 2011, 7(5): 250-254.

[32] LIU L W, WANG Q H, CUI J P. A continuous-viewing-angle-controllable liquid-crystal display using a blue-phase liquid crystal [J]. J. Soc. Inf. Disp., 2011, 19(8): 547-550.

[33] CUI J P, ZHOU F, WANG Q H, et al. Transflective blue-phase liquid crystal display using an etched in-plane switching structure [J]. J. Disp. Technol., 2011, 7(7): 398-401.

[34] CUI J P, WANG Q H, ZHOU F. Transflective blue-phase liquid-crystal display with corrugated electrode structure [J]. J. Soc. Inf. Disp., 2011, 19(11): 709-712.

[35] CHEN Y Q, SUN Y B, YANG G Q. Low voltage and high transmittance blue-phase LCDs with double-side in-plane switching electrodes [J]. Liq. Cryst., 2011, 38(5): 555-559.

[36] 李江伟, 别国军, 高嫒嫒, 等.聚合物稳定蓝相液晶用单体研究进展[J].液晶与显示, 2016, 31(3): 249-257.

    LI J W, BIE G J, GAO Y Y,et al. Advances on monomers used in polymer stabilized blue phase liquid crystal [J]. Chin. J. Liq. Cryst. Disp., 2016, 31(3): 249-257. (in Chinese)

[37] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nat. Mater., 2002, 1(1): 64-68.

[38] ZHENG Z G, ZHANG D, LIN X W, et al. Bistable state in polymer stabilized blue phase liquid crystal [J]. Opt. Mater. Express, 2012, 2(10): 1353-1358.

[39] ZHU J L, NI S B, SONG Y, et al. Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent [J]. Appl. Phys. Lett., 2013, 102(7): 071104.

[40] LI J W, DU W S, GAO A A, et al. Enlarging the Kerr constant of polymer-stabilised blue phases with a novel chiral monomer [J]. Liq. Cryst., 2016, 43(7): 937-943.

[41] YANG W Q, CAI G Q, LIU Z, et al. Room temperature stable helical blue phase enabled by a photo-polymerizable bent-shaped material [J]. J. Mater. Chem. C, 2017, 5(3): 690-696.

[42] ZHENG Z G, SHEN D, HUANG P. Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules [J]. New J. Phys., 2010, 12(11): 113018.

[43] ZHENG Z G, SHEN D, HUANG P. The liquid crystal blue phase induced by bent-shaped molecules with different terminal chain lengths [J]. New J. Phys., 2011, 13(6): 063037.

[44] WANG H F, ZHENG Z G, SHEN D. Blue phase liquid crystals induced by bent-shaped molecules based on 1, 3, 4-oxadiazole derivatives [J]. Liq. Cryst., 2012, 39(1): 99-103.

[45] WANG L, YU L L, XIAO X, et al. Effects of 1, 3, 4-oxadiazoles with different rigid cores on the thermal and electro-optical performances of liquid crystalline blue phases [J]. Liq. Cryst., 2012, 39(5): 629-638.

[46] WANG L, HE W L, WANG M, et al. Effects of symmetrically 2, 5-disubstituted 1, 3, 4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study [J]. Liq. Cryst., 2013, 40(3): 354-367.

[47] WANG X, HE W L, YANG Z, et al. The effects of asymmetric bent-shaped compounds on the temperature range and electro-optical performances of liquid crystalline blue phases [J]. RSC Adv., 2016, 6(112): 110750-110757.

[48] ZHU G, LIN X W, HU W, et al. Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups [J]. Opt. Mater. Express, 2011, 1(8): 1478-1483.

[49] WANG L, HE W L, XIAO X, et al. Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens [J]. J. Mater. Chem., 2012, 22(6): 2383-2386.

[50] ZHANG W K, HE W L, DI C C, et al. Effects of thiophene-based mesogen terminated with branched alkoxy group on the temperature range and electro-optical performances of liquid crystalline blue phases [J]. Liq. Cryst., 2016, 43(4): 524-534.

[51] LIU H P, SHEN D, WANG X Q, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups [J]. Opt. Mater. Express, 2016, 6(2): 436-443.

[52] HE W L, PAN G H, YANG Z, et al. Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative [J]. Adv. Mater., 2009, 21(20): 2050-2053.

[53] HE W L, WEI M J, YANG H, et al. Flexible H-bonded liquid-crystals with wide enantiotropic blue phases [J]. Phys. Chem. Chem. Phys., 2014, 16(12): 5622-5626.

[54] HE W L, YANG Z, CAO H, et al. Chiral hydrogen-bonded complex with different mesogens length and its effect on the performances of blue phase [J]. Opt. Mater. Express, 2016, 6(3): 868-875.

[55] HE W L, WANG X, YANG Z, et al. Effect of the dimeric H-bonded mesogens of chiral acids on the mesogenic and optical properties [J]. Liq. Cryst., 2016, 43(7): 874-885.

[56] LI Y Y, CONG Y H, CHU H S, et al. Blue phases induced by rod-shaped hydrogen-bonded supermolecules possessing no chirality or mesomorphic behaviour [J]. J. Mater. Chem. C, 2014, 2(10): 1783-1790.

[57] GUO J B, SHI Y, HAN X, et al. Stabilizing blue phases of a simple cyanobiphenyl compound by addition of achiral mesogen monomer with a branched end group and chiral hydrogen-bonded assemblies [J]. J. Mater. Chem. C, 2013, 1(5): 947-957.

[58] WEN Y, ZHENG Z G, WANG H F, et al. Photoinduced phase transition behaviours of the liquid crystal blue phase doped with azobenzene bent-shaped molecules [J]. Liq. Cryst., 2012, 39(4): 509-514.

[59] WU Y P, ZHOU Y C, YIN L C, et al. Photoinduced liquid crystal blue phase by bent-shaped cis isomer of the azobenzene doped in chiral nematic liquid crystal [J]. Liq. Cryst., 2013, 40(6): 726-733.

[60] WANG J, SHI Y, YANG K, et al. Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies [J]. RSC Adv., 2015, 5(82): 67357-67364.

[61] JIN O Y, FU D W, WEI J, et al. Light-induced wide range color switching of liquid crystal blue phase doped with hydrogen-bonded chiral azobenzene switches [J]. RSC Adv., 2014, 4(54): 28597-28600.

[62] CHEN X W, WANG L, LI C Y, et al. Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers [J]. Chem. Commun., 2013, 49(86): 10097-10099.

[63] WANG L, HE W L, XIAO X, et al. Hysteresis-free blue phase liquid-crystal-stabilized by znS nanoparticles [J]. Small, 2012, 8(14): 2189-2193.

[64] WANG L, HE W L, XIAO X, et al. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles [J]. J. Mater. Chem., 2012, 22(37): 19629-19633.

[65] WANG L, HE W L, WANG Q, et al. Polymer-stabilized nanoparticle-enriched blue phase liquid crystals [J]. J. Mater. Chem. C, 2013, 1(40): 6526-6531.

[66] XU X W, ZHANG X W, LUO D, et al. Low voltage polymer-stabilized blue phase liquid crystal reflective display by doping ferroelectric nanoparticles [J]. Opt. Express, 2015, 23(25): 32267-32273.

[67] ZHANG X W, LUO D, LI Y, et al. PbS nanoparticles stabilised blue phase liquid crystals [J]. Liq. Cryst., 2015, 42(9): 1257-1261.

[68] HE W L, ZHANG W K, XU H, et al. Preparation and optical properties of Fe3O4 nanoparticles-doped blue phase liquid crystal [J]. Phys. Chem. Chem. Phys., 2016, 18(42): 29028-29032.

[69] NI S B, LI H J, LI S, et al. Low-voltage blue-phase liquid crystals with polyaniline-functionalized graphene nanosheets [J]. J. Mater. Chem. C, 2014, 2(9): 1730-1735.

[70] ZHU G, LI J N, LIN X W, et al. Polarization-independent blue-phase liquid-crystal gratings driven by vertical electric field [J]. J. Soc. Inf. Disp., 2012, 20(6): 341-346.

[71] ZHU J L, LU J G, QIANG J, et al. 1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal [J]. J. Appl. Phys., 2012, 111(3): 033101.

[72] YAN J, XING Y F, LI Q. Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal [J]. Opt. Lett., 2015, 40(19): 4520-4523.

[73] LUO D, DAI H T, SUN X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal [J]. Opt. Express, 2013, 21(25): 31318-31323.

[74] GE S J, CHEN P, MA L L, et al. Optical array generator based on blue phase liquid crystal Dammann grating [J]. Opt. Mater. Express, 2016, 6(4): 1087-1092.

[75] GAO L, ZHENG Z Z, ZHU J L, et al. Dual-period tunable phase grating based on a single in-plane switching [J]. Opt. Lett., 2016, 41(16): 3775-3778.

[76] GE S J, JI W, CUI G X, et al. Fast switchable optical vortex generator based on blue phase liquid crystal fork grating [J]. Opt. Mater. Express, 2014, 4(12): 2535-2541.

[77] YUAN Y C, LI Y, CHEN C P, et al. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light [J]. Opt. Express, 2015, 23(15): 20007-20013.

[78] RONG N, LI Y, LI X, et al. Polymer-stabilized blue-phase liquid crystal fresnel lens cured with patterned light using a spatial light modulator [J]. J. Disp. Technol., 2016, 12(10): 1008-1012.

[79] TAN J, SONG Y, ZHU J L, et al. Blue phase LC/polymer fresnel lens fabricated by holographics [J]. J. Disp. Technol., 2014, 10(2): 157-161.

[80] CHEN C W, JAU H C, WANG C T, et al. Random lasing in blue phase liquid crystals [J]. Opt. Express, 2012, 20(21): 23978-23984.

[81] WANG L, WANG M, YANG M C, et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization [J]. Chin. Phys. B, 2016, 25(9): 094217.

[82] CAO W Y, MUOZ A, PALFFY-MUHORAY P, et al. Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II [J]. Nat. Mater., 2002, 1(2): 111-113.

[83] YOKOYAMA S, MASHIKO S, KIKUCHI H, et al. Laser emission from a polymer-stabilized liquid-crystalline blue phase [J]. Adv. Mater., 2006, 18(1): 48-51.

[84] ISOMURA T, YOSHIDA H, FUJII A, et al. Laser emission from a photopolymerized cholesteric blue phase II [J]. Mol. Cryst. Liq. Cryst., 2010, 516(1): 197-201.

[85] HUR S T, LEE B R, GIM M J, et al. Liquid-crystalline blue phase laser with widely tunable wavelength [J]. Adv. Mater., 2013, 25(21): 3002-3006.

[86] LIN J D, HUANG S Y, WANG H S, et al. Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell [J]. Opt. Express, 2014, 22(24): 29479-29492.

[87] KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. J. Mater. Chem. C, 2015, 3(21): 5383-5388.

[88] YAN J, GUO Z B, XING Y F, et al. Investigation of fringing electric field effect on high-resolution blue phase liquid crystal spatial light modulator [J]. Appl. Opt., 2015, 54(24): 7169-7174.

[89] YAN J, XING Y F, GUO Z B, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system [J]. Opt. Express, 2015, 23(12): 15256-15264.

[90] ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Opt. Express, 2013, 21(5): 5332-5337.

刘桢, 沈冬, 王骁乾, 郑致刚. 蓝相液晶材料与光子学器件研究进展[J]. 液晶与显示, 2017, 32(5): 325. LIU Zhen, SHEN Dong, WANG Xiao-qian, ZHENG Zhi-gang. Progresses on the researches of blue phase liquid crystal materials and photonic devices[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(5): 325.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!