王芳 1袁丛龙 2王翼飞 1沈冬 2[ ... ]郑致刚 1,2,**
作者单位
摘要
1 华东理工大学 材料科学与工程学院,上海 200237
2 华东理工大学 物理学院,上海 200237
防伪与伪造之间的矛盾日益加深,研发保密性强、安全性高、不可复制的防伪技术已成为社会与经济发展的迫切需求。在此背景下,液晶防伪技术因其性能优异、实用性高、广受市场好评而成为备受关注的领域。然而,现有的防伪技术层次结构不够丰富,隐藏图文颜色单一,因此,本研究提出了一种双信息防伪层的器件结构,由宾主液晶防伪膜层和胆甾相液晶防伪膜层组成,每层包含不同的信息内容。通过不同的光照模式,可以获得不同的显示内容,从而达到了多维防伪的效果。相较于传统单层宾主液晶防伪膜层,该设计具有与偏振相关的透反射差异和在透射方向上不对称的光响应特点。使用这种易制备的防伪膜层叠加设计不仅提高了防伪码的安全水平,还降低了应用成本。
宾主液晶 二色性染料 胆甾相液晶 防伪 光配向 guest-host liquid crystal dichroic dyes cholesteric liquid crystal anti-counterfeit photoalignment 
液晶与显示
2023, 38(8): 1022
作者单位
摘要
1 华东理工大学 材料科学与工程学院,上海 200237
2 华东理工大学 物理学院,上海 200237
宾主液晶器件能够在保持视野清晰的前提下实现对光透过率的调节,已被广泛应用于透明显示领域。但由于其系统复杂,在一定程度上限制了实际应用。本文通过采用区域化聚合物模板技术,制备了一种分子平行组装和螺旋组装共存的图案化宾主液晶器件。基于两区域对外界刺激响应的差异性,调节电场和偏振方向可实现图案多灰度动态显示。结果表明:在电场控制模式下,染料液晶平行组装区域的光透过率从3.28%上升到63.22%,两区域的透过率对比度从0.41提高到5.12。在偏振方向控制模式下,平行组装区域的光透过率从3.28%升至65.45%,两区域的对比度从0.41升至4.54。所制备的宾主液晶器件具备结构简单、易于调谐等特点,可适应于不同场景下的图案显示,进一步推动了液晶器件在透明显示领域及光学防伪领域的应用和发展。
宾主液晶 聚合物模板 图案化组装 动态显示 guest-host liquid crystal polymer template patterned assembly dynamic display 
液晶与显示
2023, 38(8): 1014
张耸宇 1王翼飞 2沈冬 1王骁乾 1,*[ ... ]郑致刚 1,2,***
作者单位
摘要
1 华东理工大学 物理学院,上海 200237
2 华东理工大学 材料科学与工程学院,上海 200237
向列相液晶是一种研究空间光孤子的绝好的非局域非线性介质。为了对向列相液晶中空间光孤子的偏转进行灵活的调制,设计了具有梳状电极结构的液晶盒。对这种定制电极结构的液晶盒施加电场可以实现向列液晶在周期阵列内的调制,从而实现了向列子和向列子对的可控偏转。在液晶分子的不同取向区域,入射激光束形成的向列子可以产生不同角度的偏转。当光束入射到定制电极宽度为910 μm的液晶盒中,通过改变光束的入射位置可以实现单光束约60°范围内的偏转。双光束入射到不同的位置可以形成多种偏转组合形式。改变光束的入射角度,可以观察到向列子对在界面处的非线性全反射。此外,将定制条纹电极的宽度更改为300 μm后,向列子对可以实现平行传输到相互会聚或发散之间的切换。这些关于向列子偏转的调控方法可以在全光电路和光通信中发挥重要作用。
向列相液晶 向列子 向列子对 光束偏转 液晶阵列 nematic liquid crystals nematicon nematicon pairs deflection of beams liquid crystal arrays 
液晶与显示
2023, 38(9): 1164
作者单位
摘要
1 华东理工大学 物理学院,上海 200237
2 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
传统的显示器由于滤色器的存在,有较大的功耗且能量利用率不高。本文提出了一种利用液晶调制紫外光偏振态以实现对受到局域表面等离子体共振影响的荧光量子点光强调制的方法,所设想的显示设备由用于产生局域表面等离子体共振的金属纳米结构、附着于金属纳米结构电场热区的荧光量子点和基于液晶结构的光偏振调制模块组成。对单个像素的情况进行了理论模拟和原理分析,计算了若干金属纳米结构对不同偏振态的紫外光的响应。理论验证了特定金属纳米结构的表面等离子体光强放大效应,通过电子束刻蚀和半导体沉积等技术手段可在光强放大的电场热区植入荧光量子点,受到紫外光偏振态调制的金属表面等离子体产生可控的光强增强或减弱,进而激发或者抑制相应颜色的量子点发出不同颜色的光,使其可以用于显示。提出了一种新颖的显示模式,不同于传统显示,其具有较高的能量利用率和较大的色域,虽然其存在色彩对比度较低、分辨率不够高等问题,但提议确实为人们日常的信息显示提供了一种新的思路和一种潜在可能,相信随着技术的进步和设计结构的优化,这种光偏振态调制受表面等离子体激励的荧光量子点的方法可以在显示以及非显示领域获得应用。
等离子体共振 荧光量子点 液晶 光的偏振态 光强增强 plasma resonance fluorescent quantum dot liquid crystal polarization states of light light intensity enhancement 
液晶与显示
2023, 38(1): 32
作者单位
摘要
华东理工大学 物理系, 上海 200237
扭曲-弯曲向列相是一种手性向列相, 具有纳米级螺距的倾斜螺旋结构。由于其负弯曲弹性常数、纳米级螺距以及非手性分子形成手性结构等性质, 引起了世界各地科研工作者的广泛关注。本文回顾了扭曲-弯曲向列相研究的发展历程, 重点介绍了对扭曲-弯曲向列相的特征、性能、分子运动、分子基团的研究, 阐述了扭曲-弯曲向列相在外场作用下微观结构的变化以及对扭曲-弯曲向列相的理论及模拟研究的发展现状, 并探讨了扭曲-弯曲向列相液晶的应用前景和发展趋势。本文从材料的特性、性能、应用等方面对扭曲-弯曲向列相液晶进行综述, 旨在让广大读者对这种特殊液晶光学材料的相关研究有比较全面的了解, 以此激发读者对扭曲-弯曲向列相液晶材料在相态结构、理论模拟乃至应用领域等方面更多的研究灵感。希望本文能够起到抛砖引玉的作用, 从一定程度上对该领域的研究发展有所促进。
液晶 扭曲-弯曲向列相 分子基团 liquid crystal twist-bend nematic phase CB7CB CB7CB molecular group 
液晶与显示
2020, 35(7): 645
Author Affiliations
Abstract
1 Department of Physics, East China University of Science and Technology, Shanghai 200237, China
2 School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
3 Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA
The dynamic manipulation of the helicity in a cholesteric helical superstructure could enable precise control over its physical and chemical properties, thus opening numerous possibilities for exploring multifunctional devices. When cholesteric material satisfies the sufficiently small bending elastic effect, an electrically induced deformation named the cholesteric heliconical superstructure is formed. Through theoretical and numerical analysis, we systematically studied the tunable helicity of the heliconical superstructure, including the evolution of the corresponding oblique angle and pitch length. To further confirm the optical properties, Berreman’s 4 × 4 matrix method was employed to numerically analyze the corresponding structure reflection under the dual stimuli of chirality and electric field.
cholesteric liquid crystal heliconical superstructure tunable reflection band electro-optical materials 
Chinese Optics Letters
2020, 18(8): 080005
Author Affiliations
Abstract
1 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
2 Beihang University Qingdao Research Institute, Qingdao 266101, China
3 Physics Department, East China University of Science and Technology, Shanghai 200237, China
4 Department of Medical Physics and Informatics, Bashkir State Medical University, Ufa 450008, Russia
5 School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
6 State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Hong Kong 999077, China
7 Department of Theoretical Physics, Moscow Region State University, Mytishi 141014, Russia
Diffractive optical elements attract a considerable amount of attention, mainly due to their potential applications in imaging coding, optical sensing, etc. Application of ferroelectric liquid crystals (FLCs) with photo-alignment technology in diffractive optical elements results in a high efficiency and a fast response time. In this study we demonstrate a circular Dammann grating (CDG) with a diffraction efficiency of 84.5%. The achieved response time of 64 μs is approximately two orders of magnitude faster than the existing response time of nematic liquid crystal devices. By applying a low electric field (V = 6 V) to the FLC CDG, it is switched between the eight-order diffractive state and the transmissive diffraction-free state.
ferroelectric liquid crystals photo-alignment fast switching diffractive optical elements 
Chinese Optics Letters
2020, 18(8): 080002
作者单位
摘要
华东理工大学 理学院,上海 200237
实验利用表面光取向技术控制蓝相晶格的有序生长,将光定域化取向与分子自组装相结合。通过对基板表面进行交替的取向/非取向控制,平面内获得周期排列的微结构,使蓝相图形化结构的反射光强度在空间上形成周期性调制,同时设计制备了振幅型衍射器件; 通过对基板表面做正交取向方向交替排列的微结构,使蓝相图形化结构的反射光相位在空间上形成周期性调制,设计制备了相位型衍射器件。这两类衍射器件均具有对入射光的波段选择性,即只有当入射光的波长局域在蓝相的反射带时才会呈现衍射效应。蓝相液晶软物质的特性又赋予它在电场下可调谐的波段选择性,即反射带位置随电场的增加发生红移从532 nm到610 nm,电场撤除则回复到初始状态。同时,借助于光取向材料的光可擦写特性,蓝相晶格的取向微结构能够重复的擦写与重构,从而实现不同衍射器件乃至不同衍射调制方式的转换。
蓝相液晶 光取向 定域化 超结构 衍射 刺激-响应 blue phase photo-alignment localization superstructure diffraction stimuli-responsive 
液晶与显示
2018, 33(7): 539
Author Affiliations
Abstract
1 Physics Department, East China University of Science and Technology, Shanghai 200237, China
2 ECE Department, Hong Kong University of Science and Technology, Hong Kong 999077, China
3 College of Information Science and Technology, Donghua University, Shanghai 201620, China
4 E-mail: amwtam@ust.hk
A liquid crystal Pancharatnam–Berry (PB) axilens is proposed and fabricated via a digital micro-mirror-device-based photo-patterning system. The polarization-dependent device behaves as an axilens for a left-handed circularly polarized incident beam, for which an optical ring is focused with a long focal depth in the transverse direction at the output, and an anti-axilens for a right-handed circularly polarized incident beam, for which an optical ring gradually expands at the output. The modification of the size and the sharpness of the diffracted ring beam is demonstrated by encoding a positive (negative) PB lens term into the director expression of a PB (anti-)axicon.
230.3720 Liquid-crystal devices 160.3710 Liquid crystals 050.1965 Diffractive lenses 230.3120 Integrated optics devices 
Chinese Optics Letters
2018, 16(6): 062301
作者单位
摘要
华东理工大学 物理系, 上海 200237
蓝相液晶是一种三维手性自组装软超结构材料, 具有光学各向同性, 选择性反射波长, 快速响应等优秀特性, 无论在显示还是光子器件的应用上都具有良好的发展前景, 吸引了研究人员的大量关注。近十年关于蓝相液晶显示领域的研究与工程或应用发展迅猛, 于此同时催生了其在光子学这个后显示领域的研究。面对来自国际上其他先进国家的竞争与压力, 中国大陆的学者们奋勇迎接, 经过短短数年的发展获得了一批有显示度的成果, 在国内外的优秀期刊上报道了一系列富含学术性和实用性的工作。具备高热稳定性与显著电光调制特性的新型蓝相液晶材料及其光子学器件, 如衍射光栅、相位调制器、透镜、激光以及光衰减器等, 相继被开发出。本文追逐这些前辈留下的脚印, 从材料制备、性能到光子器件设计、应用进行了概括性的回顾, 旨在通过此综述激发出蓝相液晶在非显示光子学应用领域更多的研究灵感; 若能起到进一步促进该领域发展的作用, 笔者将感到幸甚之至!
蓝相液晶 超结构 材料设计 光子器件 blue phase liquid crystal superstructure material design photonic devices 
液晶与显示
2017, 32(5): 325

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!