红外与毫米波学报, 2014, 33 (1): 31, 网络出版: 2014-03-14  

有机发光二极管中ADN掺杂ErQ的1.54μm电致发光

1.54 μm electroluminescence from ErQ doped ADN organic light-emitting diodes
作者单位
北京大学 物理学院 人工微结构与介观物理国家重点实验室,北京100871
摘要
自行设计了基于8-羟基喹啉铒(ErQ)为发射层(EMLs)和二硝酰胺铵(ADN)为蓝光主体材料的近红外有机发光二级管.器件的基本结构为(p-Si/NPB/EML/Bphen/Bphen:Cs2CO3/Sm/Au),设计并比较了三套不同发射层结构(ErQ/ADN为双层结构器件,(ErQ/ADN)×3为多层结构器件,ErQ:ADN为掺杂结构器件)的器件.三组器件在一定的偏压下,均可发出1.54 μm的光,对应三价铒离子4I13/2→4I15/2的跃迁.其中,ADN:ErQ(1∶1)掺杂结构的近红外电致发光强度是ADN /ErQ双层结构中的三倍.此外,不同掺杂浓度的ADN:ErQ复合膜做了以下表征:吸收谱、光致发光谱和荧光寿命谱.实验结果证实了在近红外电致发光过程中存在从ADN主体分子到ErQ发射分子的高效率的能量转移.
Abstract
A near-infrared (NIR) organic light-emitting devices (OLEDs) was demonstrated with emissive layers (EMLs) based on erbium (111) tris(8-hydroxyquinoline) (ErQ) and the blue host material of 9,10-di-beta-naphthylanthraeene (ADN). The fundamental structure of the devices is (p-Si /NPB /EML /Bphen /Bphen:Cs2CO3 /Sm /Au), where three sets of EMLs (ErQ/ADN bilayer, (ErQ /ADN)×3 multilayer, and ErQ: ADN doped layer) have been compared. In all the three structures, 1.54 μm electroluminescence was observed due to the 4I13/2~4I15/2 transitions of Er3+. Compared with the ADN/ErQ bilayer structure, the NIR electroluminescence (EL) intensity is stronger by three times in the ADN: ErQ(1∶1) doped structure. The ADN: ErQ composite films with different doping levels were further characterized by the measurements of absorption, photoluminescence and photoluminescence decay time. The results indicate effective energy transfer from ADN host to emissive molecular ErQ in the NIR EL process.
参考文献

[1] Zang F X, Li W L, Hong Z R, et al. Observation of 1.5 μm photoluminescence and electroluminescence from a holmium organic complex[J]. Applied Physics Letters, 2004, 84(25): 51155117.

[2] Izeddin I, Moskalenko A S, Yassievich I N, et al. Nanosecond dynamics of the near-infrared photoluminescence of Er-doped SiO2 sensitized with Si nanocrystals[J]. Physical Review Letters, 2006, 97(20).

[3] Harrison B S, Foley T J, Bouguettaya M, et al. Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends[J]. Applied Physics Letters, 2001, 79(23): 37703772.

[4] Gillin W P, Curry R J. Erbium (III) tris(8-hydroxyquinoline) (ErQ): A potential material for silicon compatible 1.5μm emitters[J]. Applied Physics Letters, 1999, 74(6): 798799.

[5] Zhao W Q, Wang P F, Ran G Z, et al. 1.54 μm Er3+ electroluminescence from an erbium-compound-doped organic light emitting diode with a p-type silicon anode[J]. Journal of Physics D-Applied Physics, 2006, 39(13): 27112714.

[6] ]Wei F, Li Y Z, Ran G Z, et al. 1.54 μm electroluminescence from p-Si anode organic light emitting diode with Bphen: Er(DBM)(3)phen as emitter and Bphen as electron transport material[J]. Optics Express, 2010, 18(13): 1354213546.

[7] Kum Hee L, Jae Nam Y, Sunwoo K, et al. Synthesis and electroluminescent properties of blue-emitting t-butylated bis(diarylaminoaryl)anthracenes for OLEDs[J]. Thin Solid Films, 2010, 518(22): 62536258.

[8] Li-Ning S, Hong-Jie Z, Lian-She F, et al. A new sol-gel material doped with an erbium complex and its potential optical-amplification application[J]. Advanced Functional Materials, 2005, 15(6): 10411048.

[9] Hao T, Xiuru W, Ying L, et al. Green organic light-emitting diodes with improved stability and efficiency utilizing a wide band gap material as the host[J]. Displays, 2008, 29(5): 502505.

[10] Park Y-S, Jeong W-I, Kim J-J. Energy transfer from exciplexes to dopants and its effect on efficiency of organic light-emitting diodes[J]. Journal of Applied Physics, 2011, 110(12).

屈海京, 陶利, 王维, 冉广照. 有机发光二极管中ADN掺杂ErQ的1.54μm电致发光[J]. 红外与毫米波学报, 2014, 33(1): 31. QU Hai-Jing, TAO Li, WANG Wei, RAN Guang-Zhao. 1.54 μm electroluminescence from ErQ doped ADN organic light-emitting diodes[J]. Journal of Infrared and Millimeter Waves, 2014, 33(1): 31.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!