强激光与粒子束, 2016, 28 (3): 033024, 网络出版: 2016-03-28  

GGMOS型静电放电防护器件的高功率微波效应

High power microwave effect of electrostatic discharge type GGMOS protection device
作者单位
1 西安交通大学 电子信息学院, 西安 710049
2 苏州珂晶达电子有限公司, 江苏 苏州 215021
3 西北核技术研究所, 西安 710024
摘要
采用基于半导体漂移扩散模型的数值模拟软件对高功率微波(HPM)作用下GGMOS型的静电放电(ESD)防护器件效应进行了数值模拟研究。对ESD器件在HPM作用下的响应特性及器件内部的物理图像进行了数值模拟。数值模拟的结果表明,外部注入HPM信号的幅值和频率是影响ESD器件的因素,在加载30 ns脉宽的HPM脉冲作用下,器件内部达到的最高温度与信号幅值成正指数关系。在给ESD注入相同幅值的HPM信号时,频率越大,器件达到失效温度所需要的时间越长。
Abstract
The response of MOSFET to HPM is numerically studied by a simulator based on semiconductor drift-diffusion model. The response characteristics of ESD device under the action of HPM and the physical image of the device are simulated. The results of numerical simulation show that the amplitude and the frequency of the HPM signal are the factors that affect the ESD device, and the maximum temperature and the signal amplitude are positive exponential relationship with the HPM pulse width of the 30ns pulse. When the HPM signal is injected into the same amplitude ESD signal, the larger the frequency is, the longer the device can achieve the failure temperature. The results of this paper can provide a theoretical reference for the research of the damage mechanism of MOS device and the reinforcement design of the HPM device.
参考文献

[1] 贡顶, 王建国, 张殿辉, 等. 通用二维半导体器件模拟软件的设计[J]. 计算物理, 2007, 24(2): 247-252. (Gong Ding, Wang Jianguo, Zhang Dianhui, et al. A general purpose two-dimensional semiconductor simulator. Chinese Journal of Computational Physics, 2007, 24(2): 247-252)

[2] 李勇, 宣春, 谢海燕, 等. 电磁脉冲作用下PIN二极管的响应研究[J]. 强激光与粒子束, 2013, 25(8): 2061-2066. (Li Yong, Xuan Chun, Xie Haiyan, et al. Study of response of PIN diode to electromagnetic pulse. High Power Laser and Particle Beams, 2013, 25(8): 2061-2066)

[3] 乔登江. 高功率电磁脉冲、强电磁效应、电磁兼容、电磁易损性及评估概论[J]. 现代应用物理, 2013, 4(3): 219-224. (Qiao Dengjiang. Introduction to HPEMP, IEME, EMC, and EM susceptibility and its assessment. Modern Applied Physics, 2013, 4(3): 219-224)

[4] Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high power pulse electromagnetic interference[J]. Solid-State Electronics, 2008, 52(10):1589-1593.

[5] 陈杰, 杜正伟. CMOS反相器的电磁干扰频率效应[J]. 强激光与粒子束, 2012, 24(1): 147-151. (Chen Jie, Du Zhengwei. Effect of electromagnetic interference frequency on CMOS inverters. High Power Laser and Particle Beams, 2012, 24(1): 147-15)

[6] 陈杰, 杜正伟. CMOS反相器内部瞬态闩锁效应的脉冲宽度效应理论模型[J]. 强激光与粒子束, 2013, 25(5): 1200-1204. (Chen Jie, Du Zhengwei. Theoretical modeling of effect of pulse width on microwave pulse triggered internal transient latch-up in CMOS inverters. High Power Laser and Particle Beams, 2013, 25(5): 1200-1204)

[7] Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Progress in Electromagnetic Research, 2008, 87(5): 313-330.

[8] Wang Haiyang, Li Jiayin, Zhou Yihong, et al. Theoretical and experimental study of complementary metal oxide semiconductor inverters under high-power microwave[J]. Electromagnetics, 2009, 29(5): 393-405.

[9] Xu Jianfeng, Yin Wenyan. Thermal transient response of GaAs FETs under intentional electromagnetic interference (IEMI)[J]. IEEE Trans Elect Dev, 2008,50(2): 340-346.

[10] Zhou Liang, Yin Wenyan, Zhou weifeng, et al. Experimental investigation and analysis of the LDMOS FET breakdown under HPM pulses[J]. IEEE Trans Electromagnetic Compatibility, 2013, 55(5): 909-916.

[11] 游海龙, 蓝建春, 范菊平, 等. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化的研究[J]. 物理学报, 2012, 61: 108501. (You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61: 108501)

[12] 宣春, 贡顶, 谢海燕, 等. 半导体器件/电路混合模拟及其在HPM效应中的应用[J]. 微电子学, 2009, 39(3): 424-428. (Xuan Chun, Gong Ding, Xie Haiyan, et al. Semiconductor device/circuit mixed-type simulation and its application in HPM effects. Microelectronics, 2009, 39(3): 424-428)

[13] 李勇, 贡顶, 宣春, 等. 半导体器件HPM效应软件GSRES中漂移扩散模型的误差分析[J]. 强激光与粒子束, 2014, 26: 063204. (Li Yong, Gong Ding, Xuan Chun, et al. Verification of drift-diffusion model of device effect numerical simulation. High Power Laser and Particle Beams, 2014, 26: 063204)

[14] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 西安: 西安交通大学出版社, 1997. (Liu Enke, Zhu Bingsheng, Luo Jinsheng, et al, Semiconductor physics. Xi’an: Xi’an Jiaotong University Press, 1997)

[15] 施敏. 半导体器件物理[M]. 西安: 西安交通大学出版社, 2008. (Shi Min. Physics of semiconductor devices. Xi’an: Xi’an Jiaotong University Press, 2008)

[16] 柴常春, 席晓文, 任兴荣, 等. 双极晶体管在强电磁脉冲作用下的损伤效应与机理[J]. 物理学报, 2010, 59(11): 8118-8124. (Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. Bipolar transistor under the effect of strong electromagnetic pulse damage effect and the mechanism. Acta Physica Sinica, 2010, 59(11): 8118-8124)

[17] 周怀安, 杜正伟, 龚克. 双极型晶体管在强电磁脉冲作用下的瞬态响应[J]. 强激光与粒子束, 2005, 17(12): 1861-1864. (Zhou Huaian, Du Zhengwei, Gong Ke. Transient response of bipolar junction transistor under intense electromagnetic pulse. High Power Laser and Particle Beams, 2005, 17(12): 1861-1864)

[18] 马振洋, 柴常春, 任兴荣, 等. 不同样式的高功率微波对双极晶体管的损伤效应和机理[J]. 物理学报, 2013, 62: 128501. (Ma Zhenyang, Chai Changchun, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by different types of high power microwave. Acta Physica Sinica, 2013, 62: 128501)

黄志娟, 刘美琴, 贡顶, 李勇, 杨志强. GGMOS型静电放电防护器件的高功率微波效应[J]. 强激光与粒子束, 2016, 28(3): 033024. Huang Zhijuan, Liu Meiqin, Gong Ding, Li Yong, Yang Zhiqiang. High power microwave effect of electrostatic discharge type GGMOS protection device[J]. High Power Laser and Particle Beams, 2016, 28(3): 033024.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!