光学 精密工程, 2019, 27 (3): 661, 网络出版: 2019-05-30   

机器人工具坐标系自动校准

Automatic calibration of robot tool center frame robot tool center frame
作者单位
天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
摘要
为了实现工业现场中对机器人工具坐标系进行快速高效地校准, 同时提升坐标系的校准精度, 提出了一种机器人工具坐标系快速校准方法, 搭建了校准系统和实验平台。对校准系统的校准测量速度和精度进行了测量和研究。该校准方法使机器人按照预定圆周和直线的轨迹进行运动, 运动时统计该系统在光电传感器中出现的时刻, 得到工具坐标系偏斜的位置。本文分析了光电传感器由于装配工艺的原因无法形成直角坐标系而引起的误差, 同时根据坐标系转换原理, 对此项误差进行分析。最后实验结果表明: 机器人工具坐标系的校准精度为±0.5 mm, 恢复时间为15 s。该结果满足汽车生产线对于精度和效率的要求, 能够快速有效地对机器人工具坐标系进行校准。
Abstract
A calibration method for the robotic Tool Center Frame (TCF) was proposed, and a calibration sensor system and experimental platform are constructed in this study. The calibration speed and accuracy of the system were measured and studied. This calibration method involved robot movement along the trajectory of a predetermined circle and a straight line. The photoelectric calibration sensor records the time while the system was moving. The position of the deviation of the tool coordinate system was obtained. In this study the error caused by the photoelectric calibration sensor was analyzed, which may not achieve a rectangular coordinate system due to the cause of the assembly. Experimental results reveal the calibration accuracy of a robot tool coordinate system at ±0.5 mm, and a calibration and recovery time of 15 s. These values meet the requirements for accuracy and efficiency in vehicle production, indicating that our method is capable of calibrating the robot tool coordinate system quickly and effectively.
参考文献

[1] 谭建荣. 智能制造与机器人应用关键技术与发展趋势[J]. 机器人技术与应用, 2017(3) : 18-19.

    TAN J R. The key technology and development trend of intelligent manufacturing and robot application [J]. Robot Technique and Application, 2017(3): 18-19. (in Chinese)

[2] 何玉庆, 赵忆文, 韩建达, 等. 与人共融——机器人技术发展的新趋势[J]. 机器人产业, 2015(5): 74-80.

    HE Y Q, ZHAO Y W, HAN J D, et al.. Communion with people--the new trend of robot technology development [J]. Robot industry, 2015(5): 74-80. (in Chinese)

[3] 蔡自兴, 谢斌.机器人学第3版[M]. 北京: 清华大学出版社, 2015.

    CAI Z X, XIE B. Robotics (3th) [M]. BeiJing: Tsinghua university press, 2015. (in Chinese)

[4] 赵志坚, 温力强. 中国汽车产业内外资企业生产效率研究[J]. 经济数学, 2009, 26(1): 81-87.

    ZHAO ZH J, WEN L Q. Research on production efficiency of domestic and foreign enterprises in China′s automobile industry [J]. Mathematics in economics, 2009, 26(1): 81-87. (in Chinese)

[5] 朴永杰, 邱 涛, 陈善本. 弧焊机器人TCF参数的标定[J]. 机器人, 2001, 23(2): 109-112.

    PIAO Y J, QIU T, CHEN SH B. Calibration of TCF parameters of arc welding robot [J]. Robot, 2001, 23(2): 109-112. (in Chinese)

[6] 赵娇娇, 朱伟. 弧焊机器人系统标定[J]. 福州大学学报, 2008, 36(s1): 36-39.

    ZHAO J J, ZHU W. Arc welding robot calibration [J]. Journal of Fuzhou University (Natural Science), 2008, 36(s1): 36-39. (in Chinese)

[7] 刘蕾. 一种弧焊机器人工具标定方法[J]. 自动化与仪器仪表, 2014(9): 76-77.

    LIU L. A tool calibration method for arc welding robot [J]. Automation and instrumentation, 2014(9): 76-77. (in Chinese)

[8] 周祥. 工业机器人工具及工件坐标系的标定研究[D]. 南京: 南京理工大学, 2015.

    ZHOU X. Research on calibration of industrial robot tools and workpiece coordinate system [D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)

[9] YIN S , GUO Y , REN Y , et al.. A novel TCF calibration method for robotic visual measurement system[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(23): 6920-6925.

[10] PAANANEN V J. Dual light barrier method for six degrees of freedom tool center point calibration of an industrial robot[J]. Lutpub, 2014.

[11] 杨聚庆, 王大勇, 董登峰, 等. 激光测量标定机器人坐标系位姿变换的正交化解算方法[J]. 光学 精密工程, 2018, 26(8).

    YANG J Q, WANG D Y, DONG D F, et al.. Orthogonal solution method for pose transformation of coordinate system of laser measuring and calibrating robot [J]. Opt. Precision Eng., 2018, 26(8). (in Chinese)

[12] 吴聊, 杨向东, 蓝善清, 等. 基于平面模板的机器人TCF标定[J]. 机器人, 2012, 34(1): 98-103.

    WU L, YANG X D, LAN SH Q, et al.. Robotic TCF calibration based on a planar template [J]. Robot, 2012, 34(1): 98-103. (in Chinese)

[13] 刘成业, 李文广, 马世国, 等. 一种机器人工具坐标系标定方法[J]. 山东科学, 2012, 25(1): 69-74.

    LIU CH Y, LI W G, MA SH G, et al.. A robot tool frame calibration method [J]. Shandong science, 2012, 25(1): 69-74. (in Chinese)

[14] 黄婷, 许辉, 樊成, 等. 叶片复杂曲面的机器人抛磨工艺规划[J]. 光学 精密工程, 2018, 26(1): 132-141.

    HUANG T, XU H, FAN CH, et al.. Robotic grinding process planning for complex blade surfaces [J]. Opt. Precision Eng., 2018, 26(1): 132-141. (in Chinese)

[15] 王天宇, 董文博, 王震宇. 基于单目视觉和固定靶标的位姿测量系统[J]. 红外与激光工程, 2017, 46(4): 153-160.

    WANG T Y, DONG W B, WANG Z Y. Position and orientation measurement system based on monocular vision and fixed target [J]. Infrared and Laser Engineering, 2017, 46(4): 153-160. (in Chinese)

刘涛, 尹仕斌, 任永杰, 张楠楠, 赵进. 机器人工具坐标系自动校准[J]. 光学 精密工程, 2019, 27(3): 661. LIU Tao, YIN Shi-bin, REN Yong-jie, ZHANG Nan-nan, ZHAO Jin. Automatic calibration of robot tool center frame robot tool center frame[J]. Optics and Precision Engineering, 2019, 27(3): 661.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!