光子学报, 2014, 43 (8): 0816004, 网络出版: 2014-09-01  

表面组装CdTe量子点的中空纤维膜抗菌性能研究

The Antibacterial Research of CdTe Quantum Dots Modified the Polysulfone Hollow Fiber Membranes
作者单位
1 天津工业大学环境与化学工程学院, 天津 300387
2 天津工业大学膜材料与膜过程教育部重点实验室, 天津 300387
摘要
聚砜中空纤维膜由于其独特的性质成为广泛使用的基膜之一, 微生物污染是其使用过程中常见的一个严峻问题, 量子点具有粒径小, 生物毒性强等特点, 在抑制微生物的生长方面有重要作用.本文主要研究量子点修饰的聚砜中空纤维膜表面的抗菌性能, 通过在水相中合成了稳定的具有窄而对称荧光发射带的量子点CdTe, 以巯基丙酸作为表面修饰剂, 对其进行了荧光光谱、透射电镜表征, 得到了粒径约为3 nm的CdTe半导体纳米粒子;以二苯甲酮为光敏剂, 通过连续化紫外辐照的方法将亲水性单体甲基丙烯酸β羟乙酯接枝到中空纤维膜的表面, 利用羟基和羧基的反应成功地在其表面组装上量子点, 通过红外光谱进行表征;从野外环境中分离培养了棒状细菌B1, 其形态通过偏光显微镜和扫描电镜表征, 利用紫外分光光度计测量光学密度, 分析中空纤维膜上量子点的抗菌性能.结果表明, 经过改性, 细菌的光学密度由原膜的0.88降低到量子点改性膜的0.27.表明中空纤维膜的抗菌性有了较显著的改善.进而表明, 连续化紫外辐照改性的方法切实可行, 并展现了在工业应用领域的潜力.
Abstract
The polysulfone hollow fiber membranes is one of the most widely used membranes in many fields due to its unique property, microbial fouling of membrane is one of the most severe challenges duing the application of the hollow fiber membrane. Quantum dots have been widely applied to inhibit the growth of microorganisms due to its small particle size, toxicity and other characteristics. This paper studies the antibacterical properties of CdTe quantum dots modified polysulfone hollow fiber membranes. The qualified CdTe quantum dots showing narrow and symmetric emission spectrum were successfully prepared in aqueous phase, Fluorescence Spectrum (FS) and TEM measurements were employed to characterized the CdTe, and its average size was calculated to b e 3nm. Benzophennone was used as photosensitizer, the polysulfone hollow fiber membrane was prepared by continuous ultraviolet photografting polymerization of β-Hydroxyethyl methacrylate onto membrane surface. Quantum dots were successfully assembled to the surface of the membranes due to the reaction between the hydroxyl group and carboxyl group, infrared spectroscope was employed to confirmed the modified membranes.Wild stranin B1 with average size of about 10μm was isolated the and cultivated, the morphology of wild strain B1 was characterized by scanning electron microscope and polarizingmicroscope. The antimicrobial capability of Quantum dots modified polysulfone hollow fiber membrane was estimated by optical density via ultraviolet spectrophotometer. The data showed that the optical density of the aqueous bacteria was decreased from 0.88 to 0.27 after quantum dots modified memebrane was applied, and consequently, the antibacterial performance of the modified membranes was improved evidently. Results indicated that the technique of continuous ultraviolet photografting polymerization shows a promising potential for modification of hollow fiber membranes in industrial scale.
参考文献

[1] AKSOY M E, USTA M, UCISIK A H. The effect of high flux hemodialysis on polymeric hollow fibers used in dialyzers[A]. In:Bioengineering Conference, 2009 IEEE 35th Annual Northeast. IEEE, 2009: 1-3.

[2] 袁峰, 孟卫, 毛庆来. 五种复用透析膜超微结构的比较[J].中国血液净化, 2002, 1(6): 18-21.

[3] DAHE G J, KADAM S S, SABALE S S, et al. In vivo evaluation of the biocompatibility of surface modified hemodialysis polysulfone hollow fibers in rat[J]. PLOSONE, 2011, 6(10): e25236.

[4] TANG Guang-chao, DU Li-ping, SU Xing-guang. Detection of melamine based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine B[J]. Food Chemistry, 2013, 141(4): 4060-4065.

[5] MODARRESI S, SOLTANIEH M, MOUSAVI S A, et al. Effect of low‐frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation[J]. Journal of Applied Polymer Science, 2012, 124(S1): E199-E204.

[6] WANG Bing, FENG Huang-fu, LIU Wei. Preparation of polysulfonebenzylthiourea-reactive ultrafiltration plate membranes and their rejection properties for heavy toxic metal cations[J]. Journal of Applied Polymer Science, 2008, 108(6): 4014-4022.

[7] UJANG Z, NG S S, Nagaoka H. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control[J]. Onsite Wastewater Treatment, Recycling, and Small Water and Wastewater Systems, 2005, 51(10): 355-342.

[8] CHEN Lan-lan, ZHANG Chen, DU Zhong-jie, et al. Functionalization of QDs with epoxy group and its transparent and luminescent epoxy matrix nanocomposites for white LED encapsulating material[J]. Materials Letters, 2013, 110: 208-211.

[9] GABELICH C J, YUN T I, COFFEY B M, et al. Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance[J]. Desalination, 2002, 150(1): 15-30.

[10] SINGH N P, BANSAL R, THAKUR A, et al. Effect of membrane composition on cytokine production and clinical symptoms during hemodialysis: a crossover study[J]. Renal Failure, 2003, 25(3): 419-430.

[11] WANG Chan-chan, YANG Feng-lin, LIU Li-fen, et al. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes[J]. Journal of Membrane Science, 2009, 345(1): 223-232.

[12] PENG Z A, PENG Xiao-gang. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184.

[13] QIAN Hui-feng, DONG Chao-qing, WENG Ji-fang, et al. Facile one‐pot synthesis of luminescent, water‐soluble, and biocompatible glutathione‐coated CdTe nanocrystals[J]. Small, 2006, 2(6): 747-751.

[14] SUN Qing-jiang, WANG Y A, LI Lin-song, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007, 1(12): 717-722.

[15] ZHANG Ting-ting, STILWELL J L, GERION D, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements[J]. Nano Letters, 2006, 6(4): 800-808.

[16] TANG Ming-liang, WANG Ming, XING Tai-ran, et al. Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons[J]. Biomaterials, 2008, 29(33): 4383-4391.

[17] LI Liang, QIAN Hui-feng, FANG Neng-hu, et al. Significant enhancement of the quantum yields of CdTe nanocrystals synthesized in an aqueous phase by controlling the pH and concentrations of precursor solutions[J]. Journal of Luminescence, 2006, 116(1): 59-66.

[18] XIONG Sha, HUANG Shi-hua, TANG Ai-wei, et al. Synthesis and luminescence properties of water-dispersible ZnSe nanocrystals[J]. Materials Letters, 2007, 61(29): 5091-5094.

[19] 张纪梅, 许世超, 宋秀云, 等. CdTe, 核-壳型 CdTe/CdS 及 CdTe/ZnS量子点的合成及表征[J]. 光子学报, 2009, 38(4): 905-910.

    ZHANG Ji-mei,XU Shi-chao,SONG Xiu-yun,et al. CdTe, Core-shell CdTe/CdS and CdTe/ZnS quanturm dots: their synthesics and charaterization[J]. Acta Photonica Sinica, 2009,38(4):905-910.

[20] BORMASHENKO E, POGREB R, WHYMAN G, et al. The reversible giant change in the contact angle on the polysulfone and polyethersulfone films exposed to UV irradiation[J]. Langmuir, 2008, 24(12): 5977-5980.

[21] DENG Hui-yu, XU You-yi, CHEN Qing-chun, et al. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes[J]. Journal of Membrane Science, 2011, 366(1): 363-372.

[22] XU Shi-chao, YAMASHITA M, YU Jun-lin, et al. Microbial degradation of disodium terephthalate by rhodococcus sp. 9-003[J]. SEN’I GAKKAISHI, 2012, 68(7): 205-209.

[23] XU Shi-chao, YAMAGUCHI T, SUYE S, et al. Microbial degradation of ethylene glycol dibenzoate by Rhodococcus sp. 2Cb[J]. SEN’I GAKKAISHI, 2006, 62(5): 107.

[24] JIANG Feng, MUSCAT A J. Ligand-controlled growth of ZnSe quantum dots in water during ostwald ripening[J]. Langmuir, 2012, 28(36): 12931-12940.

[25] KIRCHNER C, LIEDL T, KUDERA S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J]. Nano Letters, 2005, 5(2): 331-338.

[26] TSAY J M, MICHALET X. New light on quantum dot cytotoxicity[J].Chemistry & Biology, 2005, 12(11): 1159-1161.

孙孟娜, 倪柳松, 何磊, 张晨, 张欢, 许世超, 魏俊富, 王兵, 张纪梅, 代昭. 表面组装CdTe量子点的中空纤维膜抗菌性能研究[J]. 光子学报, 2014, 43(8): 0816004. SUN Meng-na, NI Liu-song, HE Lei, ZHANG Chen, ZHANG Huan, XU Shi-chao, WEI Jun-fu, WANG Bing, ZHANG Ji-mei, DAI Zhao. The Antibacterial Research of CdTe Quantum Dots Modified the Polysulfone Hollow Fiber Membranes[J]. ACTA PHOTONICA SINICA, 2014, 43(8): 0816004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!