量子电子学报, 2018, 35 (4): 432, 网络出版: 2018-08-24  

超导离子芯片近场热噪声引起的离子加热研究

Ion heating induced by near-field thermal noise of superconducting ion chip
作者单位
武汉理工大学理学院物理系, 湖北 武汉 430070
摘要
基于涨落耗散定理研究了不同温度下超导离子芯片中近场热噪声引起的离子加热效应,通过电场 格林函数和多层介质反射系数得到了不同情况下电场涨落谱密度的近似式。对于净铌电极,当温度T为295 K时, 近场热噪声谱密度与电极厚度成反比; T为4 K时,近场热噪声谱密度与电极厚度无关,且通 过计算发现其近场热噪声相较于室温下降了十几个数量级。 分析了铌电极表面存在Nb2O5薄膜的情况,结果表 明Nb2O5层薄膜引起的电场涨落占据主要地位,噪声谱密度 与Nb2O5厚度成正比,芯片温度降至4 K时其热噪声下降5~6个量级。
Abstract
Ion heating effect incuced by near-field thermal noise of superconducting ion chip at different temperature is investigated based on fluctuation-dissipation theorem. The approximate expressions of electric field fluctuation spectral density under different conditions are obtained by the electric field Green function and multi-layer reflection coefficients. For pure Nb electrode, the near-field thermal noise spectral density is inversely proportional to the electrode thickness when the temperature T is 295 K. The near-field thermal noise spectral density is irrelevant with the electrode thickness when T is 4 K, and the near-field thermal noise can be reduced by over ten orders of magnitude comparing to the case of room temperature. The case that there are Nb2O5 thin films on the surface of niobium electrode is analyzed. Results show that the electric field fluctuation induced by Nb2O5 film occupies the main position. The noise spectral density is proportional to the Nb2O5 thickness. When chip temperature decreases to 4 K, the thermal noise decreases by 5 to 6 orders of magnitude.
参考文献

[1] Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Physical Review Letters, 1995, 74(20): 4091-4094.

[2] Wineland D J, Monroe C, Itano W M, et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions [J]. Journal of Research of the National Institute of Standards and Technology, 1998, 103(3): 259-328.

[3] Lucas D M, Keitch B C, Home J P, et al. A long-lived memory qubit on a low-decoherence quantum bus [OL]. http://arXiv:quant-ph/0710.4421v1, 2007.

[4] Leibfried D, Meekhof D M, Monroe C, et al. Experimental preparation and measurement of quantum states of motion of a trapped atom [J]. Journal of Modern Optics, 1997, 44(11-12): 2485-2505.

[5] Myerson A, Szwer D, Webster S, et al. High-fidelity readout of trapped-ion qubits [J]. Physical Review Letters, 2008, 100(20): 200502.

[6] Wan Wei, Chen Liang, Wu Haoyu, et al. Manipulation of ions in microscopic surface-electrode ion traps [J]. Chinese Physics Letters (中国物理快报), 2013, 30(7): 073701 (in Chinese).

[7] Blatt R. Towards fault-tolerant quantum computing with trapped ions [J]. Nature Physics, 2008, 4(6): 463-466.

[8] He Juan, Ding Zhiyong, Wu Tao, et al. Implementing quantum controlled phase gates with trapped ions [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2011, 28(4): 429-433 (in Chinese).

[9] Turchette Q A, Kielpinski D, King B E, et al. Heating of trapped ions from the quantum ground state [J]. Physical Review A, 2000, 61(6): 276-282.

[10] Wang S X, Ge Y, Labaziewicz J, et al. Superconducting microfabricated ion traps [J]. Applied Physics Letters, 2010, 97(24): 244102.

[11] Hite D A, Colombe Y, Wilson A C, et al. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment [J]. Physical Review Letters, 2012, 109(10): 103001.

[12] Deslauriers L, Olmschenk S, Stick D, et al. Scaling and suppression of anomalous heating in ion traps [J]. Physical Review Letters, 2006, 97(10): 103007.

[13] Safavinaini A, Rabl P, Weck P, et al. A microscopic model of electronic field noise heating in ion traps [J]. Physical Review A, 2011, 84(2): 023412.

[14] Henkel C, Horovitz B. Noise from metallic surfaces-effects of charge diffusion [J]. Physical Review A, 2007, 78(4): 042902.

[15] Henkel C, Ptting S, Wilkens M. Loss and heating of particles in small and noisy traps [J]. Applied Physics B, 1999, 69(5): 379-387.

[16] Ji Weibang, Cheng Huadong, Liu Liang. Ion heating by thermal noise of planar grooved ion chip [J]. Acta Optica Sinica(光学学报), 2012, 32(10): 259-263 (in Chinese).

[17] Kumph M, Henkel C, Rabl P, et al. Electric-field noise above a thin dielectric layer on metal electrodes [J]. New Journal of Physics, 2016, 18(2): 023020.

[18] Agarwal G S. Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries [J]. Physical Review A, 1975, 11(1): 230-242.

[19] Tomas M S. Green function for multilayers: Light scattering in planar cavities [J]. Physical Review A, 1995, 51(3): 2545-2559.

[20] Mattis D C, Bardeen J. Theory of the anomalous skin effect in normal and superconducting metals [J]. Physical Review, 1958, 111(2): 412-417.

[21] Casalbuoni S, Knabbe E A, et al. Surface superconductivity in niobium for superconducting RF cavities [J]. Nuclear Instruments and Methods in Physics Research, 2004, 538(1-3): 45-64.

[22] Zhang B, Henkel C, Haller E, et al. Relevance of sub-surface chip layers for the lifetime of magnetically trapped atoms [J]. European Physical Journal D, 2005, 35(1): 97-104.

[23] Pronin A V, Dressel M, Pimenov A, et al. Direct observation of the superconducting energy gap in the conductivity spectra of thin Niobium films [J]. Physical Review B, 1998, 57(22): 14416-14420.

[24] Mcconnell R, Bruzewicz C, Chiaverini J, et al. Reduction of trapped ion anomalous heating by in situ surface plasma cleaning [J]. Physical Review A, 2015, 92(2): 020302.

[25] Emmenegger F P, Robinson M L A. Preparation and dielectric properties of niobium pentoxide crystals [J]. Journal of Physics and Chemistry of Solids, 1968, 29(9): 1673-1681.

[26] Brunner H R, Emmenegger F P, et al. Growth and properties of Nb2O5 thin film capacitors [J]. Journal of the Electrochemical Society, 1968, 115(12): 1287-1289.

[27] Halbritter J. On the oxidation and on the superconductivity of niobium [J]. Applied Physics A, 1987, 43(1): 1-28.

徐志兵, 张波, 杨波, 刘子龙, 毛如圣. 超导离子芯片近场热噪声引起的离子加热研究[J]. 量子电子学报, 2018, 35(4): 432. XU Zhibing, ZHANG Bo, YANG Bo, LIU Zilong, MAO Rusheng. Ion heating induced by near-field thermal noise of superconducting ion chip[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 432.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!