Photonics Research, 2018, 6 (2): 02000109, Published Online: Jul. 10, 2018   

Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications

Miaofeng Li 1,2,3Lei Wang 2,3Xiang Li 2,3Xi Xiao 2,3,*Shaohua Yu 1,2,3
Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
2 State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts & Telecommunications, Wuhan 430074, Hubei, China
3 National Information Optoelectronics Innovation Center, Wuhan 430074, Hubei, China
Copy Citation Text

Miaofeng Li, Lei Wang, Xiang Li, Xi Xiao, Shaohua Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications[J]. Photonics Research, 2018, 6(2): 02000109.

References

[1] R. W. Tkach. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J., 2010, 14: 3-9.

[2] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 2010, 4: 518-526.

[3] IEEE, “200 Gb/s and 400 Gb/s ethernet task force,” IEEE P802.3bs, 2016, available at .

[4] KanazawaS.FujisawaT.TakahataK.SanjohH.IgaR.UedaY.KobayashiW.IshiiH., “400-Gb/s operation of flip-chip interconnection EADFB laser array module,” in Optical Fiber Communications Conference (2015), paper Tu3I.1.

[5] P. Groumas, V. Katopodis, J. H. Choi, H.-G. Bach, J.-Y. Dupuy, A. Konczykowska, Z. Zhang, P. Harati, E. Miller, A. Beretta, L. Gounaridis, F. Jorge, V. Nodjiadjim, A. Dede, A. Vannucci, G. Cangini, R. Dinu, N. Keil, N. Grote, H. Avramopoulos, C. Kouloumentas. Multi-100  GbE and 400  GbE interfaces for intra-data center networks based on arrayed transceivers with serial 100  Gb/s operation. J. Lightwave Technol., 2015, 33: 943-954.

[6] C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, J. Leuthold. Plasmonic modulator with >170  GHz bandwidth demonstrated at 100  GBd NRZ. Opt. Express, 2017, 25: 1762-1768.

[7] H. Zwickel, S. Wolf, C. Kieninger, Y. Ku-Tuvantavida, M. Lauermann, T. De keulenaer, A. Vyncke, R. Vaernewyck, J. Luo, A. K.-Y. Jen, W. Freude, J. Bauwelinck, S. Randel, C. Koos. Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120  Gbit/s. Opt. Express, 2017, 25: 23784-23799.

[8] MatsuiY.PhamT.LingW. A.SchatzR.CareyG.DaghighianH.SudoT.RoxloC., “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Optical Fiber Communications Conference (2016), paper Th5B.4.

[9] M. Streshinsky, A. Novack, R. Ding, Y. Liu, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Silicon parallel single mode 48 × 50  Gb/s modulator and photodetector array. J. Lightwave Technol., 2014, 32: 4370-4377.

[10] DenoyerG.ChenA.ParkB.ZhouY.SantipoA.RussoR., “Hybrid silicon photonic circuits and transceiver for 56  Gb/s NRZ 2.2  km transmission over single mode fiber,” in 40th European Conference Optical Communication (ECOC), Cannes, France, September 2014, paper PD.2.4.

[11] D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, D. V. Plant. Design, analysis, and transmission system performance of a 41  GHz silicon photonic modulator. Opt. Express, 2015, 23: 14263-14287.

[12] X. Xiao, H. Xu, X. Y. Li, Z. Y. Li, T. Chu, Y. D. Yu, J. Z. Yu. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt. Express, 2013, 21: 4116-4125.

[13] ChrostowskiL.HochbergM., Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

[14] R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, M. Hochberg. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive. J. Lightwave Technol., 2014, 32: 2240-2247.

[15] P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y.-K. Chen. Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 150-157.

[16] M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, D. V. Plant. Experimental study of 112  Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3  μm. Opt. Express, 2014, 22: 21018-21036.

[17] A. Samani, D. Patel, M. Chagnon, E. Elfiky, R. Li, M. Jacques, N. Abadia, V. Veerasubramanian, D. V. Plant. Experimental parametric study of 128  Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator. Opt. Express, 2017, 25: 13252-13262.

[18] A. R. Soref, B. R. Bennett. Electro optical effects in silicon. IEEE J. Quantum Electron., 1987, 23: 123-129.

[19] R. G. Walker. High-speed III-V semiconductor intensity modulators. IEEE J. Quantum Electron., 1991, 27: 654-667.

[20] K. Ogawa, K. Goi, Y. T. Tan, T.-Y. Liow, X. Tu, Q. Fang, G.-Q. Lo, D.-L. Kwong. Silicon Mach-Zehnder modulator of extinction ratio beyond 10  dB at 10.0–12.5  Gbps. Opt. Express, 2012, 20: 6163-6169.

[21] P. Dong, L. Chen, Y.-K. Chen. High-speed low-voltage single-drove push-pull silicon Mach-Zehnder modulators. Opt. Express, 2011, 19: B26-B31.

[22] Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, G.-Q. Lo. High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt. Express, 2014, 22: 29978-29985.

[23] D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, P. Crozat, F. Boeuf, L. Vivien. A 40  Gbit/s optical link on a 300-mm silicon platform. Opt. Express, 2014, 22: 6674-6679.

[24] L. Chen, C. R. Doerr, P. Dong, Y.-K. Chen. Monolithic silicon chip with 10 modulator channels at 25  Gbps and 100-GHz spacing. Opt. Express, 2011, 19: B946-B951.

[25] H. Yu, W. Bogaerts. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J. Lightwave Technol., 2012, 30: 1602-1609.

[26] GhioneG., Semiconductor Devices for High-speed Optoelectronics (Cambridge University, 2009), Chap. 6.

[27] LeeJ.KanedaN.PfauT.KonczykowskaA.JorgeF.DupuyJ. Y.ChenY. K., “Serial 103.125-Gb/s transmission over 1  km SSMF for low-cost, short-reach optical interconnects,” in Optical Fiber Communications Conference (2014), paper Th2A.4.

Miaofeng Li, Lei Wang, Xiang Li, Xi Xiao, Shaohua Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications[J]. Photonics Research, 2018, 6(2): 02000109.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!