半导体光电, 2019, 40 (3): 385, 网络出版: 2019-07-09  

ZnO纳米棒薄膜光学性能的系统研究

Systematic Study on Optical Properties of ZnO Nanorod Films
作者单位
1 福建师范大学 协和学院, 福州 350108
2 厦门理工学院 福建省功能材料及应用重点实验室,福建 厦门 361024
3 河南师范大学 物理与材料科学学院 河南省光伏材料重点实验室, 河南 新乡 453007
摘要
采用简化的种子层制备工艺在ITO基底上制备了ZnO种子层,并使用化学溶液沉积法制备了高度取向的ZnO纳米棒阵列。采用XRD和SEM对ZnO纳米棒的结构和形貌进行表征,并对样品的光学性能进行了测试。测试结果表明,所制备的ZnO纳米棒为c轴择优取向的六角纤锌矿结构,直径为66~122nm可控,且排列紧密,形貌规整。光学性能测试结果表明,吸收光谱在375nm附近表现出强烈的紫外吸收边是由于禁带边吸收引起的;反射光谱具有一定的周期振荡性,可用于薄膜厚度的估算;光致发光谱在378nm附近有很强的紫外发射峰;增大生长液浓度和高温退火可降低缺陷发光,改善结晶质量。
Abstract
In order to systematically study the optical properties of ZnO nanorod films, a ZnO seed layer was prepared on the ITO substrate by a simplified preparation process, and the highly oriented ZnO nanorod arrays were prepared by chemical bath deposition. Then, the structure and morphology of ZnO nanorods were characterized by XRD and SEM. Finally, the optical properties of the samples were tested. XRD and SEM results show that the prepared ZnO nanorods are c-axis preferred orientation hexagonal wurtzite structure with a diameter of 66~122nm, tight alignment and regular morphology. Tests were performed on the optical performance and the results show that the absorption spectrum exhibits a strong ultraviolet absorption edge around 375nm, which is caused by the band gap absorption; and the reflection spectrum has a certain periodic oscillation, which can be used for the estimation of film thickness. The photoluminescence spectrum has a strong ultraviolet emission peak near 378nm, and increasing the concentration of the growth solution and annealing at high temperature can reduce the defect luminescence and improve the crystal quality.
参考文献

[1] 孙 义, 李 青. 基于化学溶液法制备的氧化锌量子点发光二极管研究[J]. 液晶与显示, 2016, 31(7): 635-642.

    Sun Yi, Li Qing. Research of zinc oxide quantum dot light-emitting diodes based on preparation of chemical solutions[J]. Chinese J. of Liquid Crystals and Displays, 2016, 31(7): 635-642.

[2] Rahman M A, Scott J A, Gentle A, et al. A facile method for bright, colour-tunable light-emitting diodes based on Ga-doped ZnO nanorods[J]. Nanotechnol., 2018, 29(42): 425707.

[3] Willander M, Nur O, Zhao Q X, et al. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers[J]. Nanotechnol., 2009, 20(33): 332001.

[4] 陆 慧, 张连萍, 骆 群, 等. 纳米ZnO墨水的溶剂及浓度优化及其在钙钛矿太阳能电池中的应用[J]. 发光学报, 2016, 37(3): 265-273.

    Lu Hui, Zhang Lianping, Luo Qun, et al. Solvent and concentration optimization of nano-ZnO inks and their application in perovskite solar cells[J]. Chinese J. of Luminescence, 2016, 37(3): 265-273.

[5] Vinoth Pandi D, Muthukumarasamy N, Agilan S, et al. CdSe quantum dots sensitized ZnO nanorods for solar cell application[J]. Mater. Lett., 2018: S0167577X18306086.

[6] Liu L, Hong K, Ge X, et al. Controllable and rapid synthesis of long ZnO nanowire arrays for dye-sensitized solar cells[J]. The J. of Physical Chemistry C, 2014, 118(29): 15551-15555.

[7] 何祖明, 夏咏梅, 唐 斌, 等. ZnO/Cu2O异质结纳米阵列制备及光催化性能[J]. 发光学报, 2017, 38(7): 936-943.

    He Zuming, Xia Yongmei, Tang Bin, et al. Preparation and photocatalytic property of ZnO/Cu2O heterostructured nanorod arrays[J]. Chinese J. of Luminescence, 2017, 38(7): 936-943.

[8] Roge V, Guignard C, Lamblin G, et al. Photocatalytic degradation behavior of multiple xenobiotics using MOCVD synthesized ZnO nanowires[J]. Catalysis Today, 2018, 306: 215-222.

[9] 杨志博, 曹培江, 韩 舜, 等. Pd颗粒表面修饰ZnO纳米线阵列的制备及其气敏特性[J]. 发光学报, 2017, 38(8): 1033-1038.

    Yang Zhibo, Cao Peijiang, Han Shun, et al. Preparation and gas sensing characteristics of ZnO nanowire arrays surface-decorated by Pd particles[J]. Chinese J. of Luminescence, 2017, 38(8): 1033-1038.

[10] Kaur N, Zappa D, Ferroni M, et al. Branch-like NiO/ZnO heterostructures for VOC sensing[J]. Sensors and Actuators B: Chemical, 2018, 262: 477-485.

[11] Jaisutti R, Lee M, Kim J, et al. Ultrasensitive room-temperature operable gas sensors using p-type Na∶ZnO nanoflowers for diabetes detection[J]. ACS Appl. Materials & Interfaces, 2017, 9(10): 8796-8804.

[12] Shabannia R. High-sensitivity UV photodetector based on oblique and vertical co-doped ZnO nanorods[J]. Mater. Lett., 2018, 214: 254-256.

[13] 方向明, 范怀云, 高世勇, 等. ZnO纳米棒的制备及紫外探测性能[J]. 发光学报, 2018, 39(3): 369-374.

    Fang Xiangming, Fan Huaiyun, Gao Shiyong, et al. Fabrication and ultraviolet detection of ZnO nanorods[J]. Chinese J. of Luminescence, 2018, 39(3): 369-374.

[14] 孙兴敏, 金轶民, 矫淑杰, 等. 电化学沉积法制备ZnO纳米柱及自驱动紫外探测性能研究[J]. 发光学报, 2016, 37(5): 591-596.

    Sun Xingmin, Jin Yimin, Jiao Shujie, et al. Fabrication of ZnO nanorods by electrochemical deposition and research on the self-powered ZnO ultraviolet photodetector[J]. Chinese J. of Luminescence, 2016, 37(5): 591-596.

[15] Matsuo H, Yoshitoku K, Saito M, et al. Fabrication of ZnO-based thermoelectric micro-devices by electrodeposition[J]. J. of The Electrochemical Society, 2018, 165(9): D417-D422.

[16] Norouzi M, Kolahdouz M, Ebrahimi P, et al. Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods[J]. Thin Solid Films, 2016, 619: 41-47.

[17] Advand M, Kolahdouz M, Rostami A, et al. Array of vertically aligned Al-doped ZnO nanorods: Fabrication process and field emission performance[J]. Thin Solid Films, 2018, 656: 6-13.

[18] Zhang Y A, Lin T, Lin T H, et al. Fabrication and properties of planar gate field emission arrays with patterned ZnO nanowires[J]. Materials Technol., 2014, 29(5): 313-318.

[19] 康冬茹, 叶 芸, 汪江胜, 等. 图形化氧化锌阵列的制备及其场发射性能研究[J]. 液晶与显示, 2017, 32(5): 367-371.

    Kang Dongru, Ye Yun, Wang Jiangsheng, et al. Fabrication and field emission properties of patterned ZnO arrays[J]. Chinese J. of Liquid Crystals and Displays, 2017, 32(5): 367-371.

[20] Van Khai T, Van Thu L, Ha L T T, et al. Structural, optical and gas sensing properties of vertically well-aligned ZnO nanowires grown on graphene/Si substrate by thermal evaporation method[J]. Materials Characterization, 2018, 141: 296-317.

[21] Eom T H, Han J I. Single fiber UV detector based on hydrothermally synthesized ZnO nanorods for wearable computing devices[J]. Appl. Surface Science, 2018, 428: 233-241.

[22] Wang Y, Hou Z, Guo H, et al. Preparation of ZnO nanorods via aqueous solution process and their PL properties[J]. Mater. Lett., 2013, 91: 107-110.

[23] Zheng Z H, Lin J P, Song X H, et al. Optical properties of ZnO nanorod films prepared by CBD method[J]. Chemical Phys. Lett., 2018, 712: 155-159.

[24] Bekeny C, Voss T, Gutowski J, et al. Optical properties of ZnO nanorods realised by aqueous chemical growth[J]. Superlattices and Microstructures, 2007, 42(1/6): 398-402.

[25] Chandrinou C, Boukos N, Stogios C, et al. PL study of oxygen defect formation in ZnO nanorods[J]. Microelectronics J., 2009, 40(2): 296-298.

[26] Mingsong W, Eui J K, Jin S C, et al. Influence of annealing temperature on the structural and optical properties of sol-gel prepared ZnO thin films[J]. Physica Status Solidi A, 2006, 203(10): 2418-2425.

[27] Yang X, Du G, Wang X, et al. Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor deposition[J]. J. of Crystal Growth, 2003, 252(1/3): 275-278.

[28] Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO[J]. Phys. Rev. Lett., 1999, 82(12): 2552.

郑中华, 林建平, 宋孝辉, 熊建辉. ZnO纳米棒薄膜光学性能的系统研究[J]. 半导体光电, 2019, 40(3): 385. ZHENG Zhonghua, LIN Jianping, SONG Xiaohui, XIONG Jianhui. Systematic Study on Optical Properties of ZnO Nanorod Films[J]. Semiconductor Optoelectronics, 2019, 40(3): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!