作者单位
摘要
1 福建师范大学 协和学院, 福州 350108
2 厦门理工学院 福建省功能材料及应用重点实验室,福建 厦门 361024
3 河南师范大学 物理与材料科学学院 河南省光伏材料重点实验室, 河南 新乡 453007
采用简化的种子层制备工艺在ITO基底上制备了ZnO种子层,并使用化学溶液沉积法制备了高度取向的ZnO纳米棒阵列。采用XRD和SEM对ZnO纳米棒的结构和形貌进行表征,并对样品的光学性能进行了测试。测试结果表明,所制备的ZnO纳米棒为c轴择优取向的六角纤锌矿结构,直径为66~122nm可控,且排列紧密,形貌规整。光学性能测试结果表明,吸收光谱在375nm附近表现出强烈的紫外吸收边是由于禁带边吸收引起的;反射光谱具有一定的周期振荡性,可用于薄膜厚度的估算;光致发光谱在378nm附近有很强的紫外发射峰;增大生长液浓度和高温退火可降低缺陷发光,改善结晶质量。
ZnO纳米棒 吸收光谱 反射光谱 光致发光谱 ZnO nanorods absorption spectrum reflection spectrum photoluminescence spectrum 
半导体光电
2019, 40(3): 385
作者单位
摘要
1 福建师范大学 协和学院,福建 福州 350108
2 厦门理工学院 福建省功能材料及应用重点实验室,福建 厦门361024
3 西安交通大学 电子陶瓷与器件教育部重点实验室,陕西 西安710049
为了快速制备具有优良场发射性能的ZnO纳米线,对ZnO纳米线的生长机理及场发射性能进行研究。首先采用优化的两步法制备出高长径比的ZnO纳米线,其次采用SEM对ZnO的微观形貌进行表征,然后,在分析形貌特点的基础上,说明了强碱体系下ZnO纳米线薄膜的快速生长机理。最后,对典型样品的场发射性能进行了测试。测试果表明,优化后的两步法,只需3 h即可获得直径为40~50nm,长度为2.2~2.7 μm,长径比高达54的纳米线。薄膜的开启电场为3.6 V/μm,阈值场强为9.1 V/um,场增强因子β高达3 391。研究表明,高pH值溶液可以加快ZnO纳米线沿C轴方向的择优生长,获得高长径比的ZnO纳米线,进而获得优良的场发射性能。
纳米线 生长机理 场发射 ZnO ZnO nanowires growth mechanism field emission 
液晶与显示
2018, 33(9): 758
作者单位
摘要
1 宁德师范学院 物理与电气工程系,福建 宁德 352100
2 福建师范大学 物理系,福州 350108
用直流磁控溅射技术在石英基片上制备不同厚度(5 nm~114 nm之间)的铬膜.使用X射线衍射仪和分光光度计分别检测薄膜的结构和光学性质,利用德鲁特模型和薄膜的透射、反射光谱计算铬膜的厚度和光学常量,并采用Van der Pauw方法测量薄膜电学性质.结果表明:制备的铬薄膜为体心立方的多晶态,随着膜厚的增加,薄膜的结晶性能提高,晶粒尺寸增大;在可见光区域,当膜厚小于32 nm时,随着膜厚的增加,折射率快速减小,消光系数快速增大,当膜厚大于32 nm时,折射率和消光系数均缓慢减小并逐渐趋于稳定;薄膜电阻率随膜厚的增加为一次指数衰减.
磁控溅射 铬薄膜 结构 光学性质 电学性质 Magnetron sputtering Cr film Structure Optical properties Electrical properties 
光子学报
2012, 41(8): 922

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!