激光与光电子学进展, 2018, 55 (8): 082802, 网络出版: 2018-08-13  

机载激光测深系统与船载移动测量系统数据配准方法研究 下载: 946次

Study on the Data Registration Method of Airborne Bathymetric LiDAR System and Ship-Based Mobile Measurement System
作者单位
1 山东科技大学测绘科学与工程学院, 山东 青岛 266590
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
3 青岛秀山移动测量有限公司, 山东 青岛 266590
4 杭州中科天维科技有限公司, 浙江 杭州 310016
5 中国海监南海航空支队, 广东 广州 510310
摘要
机载激光测深系统能够快速、高效地测量浅海、岛礁、暗礁及船只无法安全到达的水域,能够提供近岸全覆盖50 m水深测量;船载移动测量系统可以获得近岸浅海水底地形数据及近岸岛礁精细三维激光点云,二者数据在测量区域以及测量范围上具有一定的互补性。文中采用一种基于曲率特征点的改进迭代最近点(ICP)算法,将国产机载测深系统和船载移动测量系统获取的机载激光测深数据、多波束数据、三维激光扫描数据进行配准融合。结果表明,通过将二者数据进行配准融合,可以实现陆地、浅海区域海陆地形的全面精准描述、海陆基准统一,有助于海岛礁地形地貌认识、水下目标物探测及发现等。
Abstract
Efficiently and quickly measuring shallow waters, islands, reefs, ledges and unreachable waters for ships, an airborne bathymetric LiDAR system is able to measure deep to 50 meters, covering the entire inshore region, while the ship-based mobile measurement system is capable of obtaining topographic data of the ocean floor in inshore shallow sea and fine 3D laser point cloud of islands and reefs. These systems have some complementarity in the area and range of measurement. In this paper, an improved iterative closest point (ICP) algorithm based on feature points of curvature is applied to conduct registration and fusion of airborne bathymetric data, multi-beam data and 3D laser scanning data obtained from the domestic airborne bathymetric LiDAR system and the ship-based mobile measurement system, as well as comprehensively and accurately describe the terrain of both coastal waters and inshore areas for a unified criterion. The results show that the registration data from the airborne bathymetric LiDAR system and the ship-based mobile measurement system can be of great significance in comprehending the topography of islands and reefs, as well as detecting and discovering underwater targets.
参考文献

[1] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10): 1786-1794.

    Zhao J H, Ouyang Y Z, Wang A X. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1786-1794.

[2] Steinvall O K, Koppari K R, Karlsson U C M. Airborne laser depth sounding: system aspects and performance[J]. Proceedings of SPIE, 1994, 2558: 392-412.

[3] Gaba S P. Underwater ranging[J]. Defence Science Journal, 2014, 34(1): 71-78.

[4] 贺岩, 田茂义, 吕德亮, 等. 机载双频激光雷达系统参数设计和性能分析[C]∥红外、遥感技术与应用研讨会暨交叉学科论坛, 江苏, 南京, 2015: 183-192.

    He Y, Tian M Y, Lü D L, et al. Parameter design and performance analysis of airborne dual frequency laser radar system[C]∥Infrared and Remote Sensing Technology and Applications and Interdisciplinary Forum, Nanjing, Jiangsu, 2015: 183-192.

[5] Hu Y H, Min H, Zhao N X. Airborne and spaceborne laser sounding technology and applications[J]. Proceedings of SPIE, 2009, 7382: 73820A.

[6] Huang M T, Zhai G J, Xie X J, et al. The influence of carrier′s attitude and the position reduction in multibeam echosounding and airborne laser depth sounding[J]. Acta Geodaetica et Cartographica Sinica, 2000, 2(3): 77-88.

[7] 胡善江, 贺岩, 臧华国, 等. 新型机载激光测深系统及其飞行实验结果[J]. 中国激光, 2006, 33(9): 1163-1167.

    Hu S J, He Y, Zang H G, et al. A new airborne laser bathymetry system and survey result[J]. Chinese Journal of Lasers, 2006, 33(9):1163-1167.

[8] 任来平, 赵俊生, 翟国君, 等. 机载激光测深海面扫描轨迹计算与分析[J]. 武汉大学学报(信息科学版), 2002, 27(2): 138-142.

    Ren L P, Zhao J S, Zhai G J, et al. Scanning-track computation and analysis for airborne laser depth sounding[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 138-142.

[9] 樊妙, 孙毅, 邢喆, 等. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130-137.

    Fan M, Sun Y, Xing Z, et al. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137.

[10] 阳凡林, 吴自银, 独知行, 等. 多波束声纳和侧扫声纳数字信息的配准及融合[J]. 武汉大学学报(信息科学版), 2006, 31(8): 740-743.

    Yang F L, Wu Z Y, Du Z X, et al. Co-registering and fusion of digital information of multi-beam sonar and side-scan sonar[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 740-743.

[11] 刘经南, 赵建虎. 多波束测深系统的现状和发展趋势[J]. 海洋测绘, 2002, 22(5): 3-6.

    Liu J N, Zhao J H. The present status and developing trend of the multibeam system[J]. Hydroaphic Surveying and Charting, 2002, 22(5): 3-6.

[12] Costa B M, Battista T A, Pittman S J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems[J]. Remote Sensing of Environment, 2009, 113(5): 1082-1100.

[13] Gall B L, Authemayou C, Ehrhold A, et al. LiDAR offshore structural mapping and U/Pb zircon/monazite dating of Variscan strain in the Leon metamorphic domain, NW Brittany[J]. Tectonophysics, 2014, 630: 236-250.

[14] Kennedy D M, Ierodiaconou D, Schimel A. Granitic coastal geomorphology: applying integrated terrestrial and bathymetric LiDAR with multibeam sonar to examine coastal landscape evolution[J]. Earth Surface Processes and Landforms, 2014, 39(12): 1663-1674.

[15] Schmauder G C, Kent G, Smith K D, et al. Reexamination of faulting in the Tahoe Basin using airborne LiDAR data and seismic CHIRP imagery[C]∥Fall Meeting of American Geophysical Union, 2011: S12A-05.

[16] Kaneko S, Kondo T, Miyamoto A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation[J]. Pattern Recognition, 2003, 36(9): 2041-2047.

[17] Minguez J, Montesano L, Lamiraux F. Metric-based iterative closest point scan matching for sensor displacement estimation[J]. IEEE Transactions on Robotics, 2006, 22(5): 1047-1054.

[18] Zhu J, Du S, Yuan Z, et al. Robust affine iterative closest point algorithm with bidirectional distance[J]. IET Computer Vision, 2012, 6(3): 252-261.

[19] 曾繁轩, 李亮, 刁鑫鹏. 基于曲率特征的迭代最近点算法配准研究[J]. 激光与光电子学进展, 2017, 54(1): 011003.

    Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011003.

[20] Zhu J H, Zheng N N, Yuan Z J, et al. Robust scaling iterative closest point algorithm with bidirectional distance measurement[J]. Electronics Letters, 2010, 46(24): 1604-1605.

[21] Du S Y, Zhu J H, Zheng N N, et al. Robust iterative closest point algorithm for registration of point sets with outliers[J]. Optical Engineering, 2011, 50(8): 087001.

[22] 张哲, 许宏丽, 尹辉. 一种基于关键点选择的快速点云配准算法[J]. 激光与光电子学进展, 2017, 54(12): 121002.

    Zhang Z, Xu H L, Yin H. A fast point cloud registration algorithm based on key point selection[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121002.

[23] 李仁忠, 杨曼, 田瑜, 等. 基于ISS特征点结合改进ICP的点云配准算法[J]. 激光与光电子学进展, 2017, 54(11): 111503.

    Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503.

[24] Peng K, Chen X, Zhou D, et al. 3-D reconstruction using image sequences based on projective depth and simplified iterative closest point[J]. Optical Engineering, 2012, 51(2): 021110.

田茂义, 王延存, 俞家勇, 贺岩, 曹岳飞, 吕德亮, 胡善江, 杨忠, 朱霞, 石先高. 机载激光测深系统与船载移动测量系统数据配准方法研究[J]. 激光与光电子学进展, 2018, 55(8): 082802. Tian Maoyi, Wang Yancun, Yu Jiayong, He Yan, Cao Yuefei, Lü Deliang, Hu Shanjiang, Yang Zhong, Zhu Xia, Shi Xiangao. Study on the Data Registration Method of Airborne Bathymetric LiDAR System and Ship-Based Mobile Measurement System[J]. Laser & Optoelectronics Progress, 2018, 55(8): 082802.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!