作者单位
摘要
1 河海大学地球科学与工程学院,江苏 南京 211100
2 山东科技大学测绘与空间信息学院,山东 青岛 266590
3 安徽建筑大学土木工程学院,安徽 合肥 230601
4 青岛秀山移动测量有限公司,山东 青岛 266590
针对基于车载激光点云的坑槽检测受道路横、纵坡度影响而导致误检和漏检等问题,提出了一种联合粗糙度与负偏态分布的路面坑槽检测方法。首先利用垂直度分割路面点云。然后,通过M估计样本一致性(MSAC)拟合局部基准平面,并计算点云的粗糙度;以粗糙度较小的区域作为潜在坑槽区域,并利用密度聚类和连续度实现潜在坑槽的单体化。最后,根据坑槽与邻域路面点云的粗糙度统计特征,结合负偏态分布实现坑槽区域的精确筛选,并提取坑槽的三维几何特征。采用开源数据和实测数据进行实验验证与分析。实验结果表明:实测数据路面中,坑槽检测的召回率达到89.2%,准确率达到76.7%;坑槽几何特征的提取结果与人工实地测量结果的最大相对偏差为9.4%,可为大规模的路面损坏检测提供有力支撑。
遥感 车载激光点云 粗糙度 偏态分布 路面坑槽检测 
中国激光
2024, 51(5): 0510004
作者单位
摘要
1 安徽建筑大学土木工程学院,安徽 合肥 230601
2 中建五局第二建设有限公司,安徽 合肥 230000
针对传统施工建筑平整度检测方法效率低、检测结果受人为主观因素影响较大等问题,提出一种基于三维激光扫描的平整度检测方法。首先,利用三维激光扫描仪对目标建筑进行数据采集、处理和拼接,获得高精度三维点云数据;其次,结合建筑平整度检测特点设计了一种非均匀抽稀方法,用于无损保留墙面凹凸特征;然后,利用随机抽样一致性算法结合特征值法,对建筑点云数据进行自动化特征提取与平面拟合,获得待检测墙面几何参数;最后,依据平整度检测原理,利用拟合平面与点云数据拓扑空间关系,设计了一种基于三维激光扫描的施工建筑平整度检测方法。实验结果表明:所提非均匀抽稀方法能够有效完成点云数据抽稀工作,抽稀比达55.4%,且能够无损保留墙面凹凸特征;基于三维激光扫描的平整度检测方法理论可行,精度可靠,较传统检测方法,效率提高了23.33%,且更加全面。
检测 三维激光扫描 点云抽稀 平整度检测 
激光与光电子学进展
2023, 60(16): 1612004
作者单位
摘要
1 山东科技大学测绘与空间信息学院,山东 青岛 266590
2 安徽建筑大学土木工程学院,安徽 合肥 230601
3 青岛秀山移动测量有限公司,山东 青岛 266590
针对传统的迭代最近点(ICP)点云配准算法存在收敛缓慢、配准时间长、重叠率过低导致的匹配错误等问题,提出了一种以分块提取特征点为核心、块状配准点云重叠率为约束的改进ICP配准算法。首先,计算点云的平均距离密度,在设定的数量阈值内对点云进行分块,并从分块后的点云中并行提取尺度不变特征变换(SIFT)特征点,采用快速点特征直方图(FPFH)进行特征描述;然后,利用采样一致性初始配准(SAC-IA)算法实现点云的匹配,同时以块间匹配率50%作为依据,提取点云的重叠区域;最后,基于匹配的特征点计算初始姿态,在此基础上利用重叠部分实现两块点云的精确配准。实验结果表明,重叠率较低的点云经分块及重叠区域提取后,可以大幅缩短运行时间,提高配准精度。
机器视觉 点云配准 point cloud registration 点云分块 特征提取 重叠区域 精细配准 
激光与光电子学进展
2022, 59(2): 0215007
作者单位
摘要
1 山东科技大学 测绘科学与工程学院,山东 青岛 266590
2 山东科技大学 海洋工程研究院,山东 青岛 266590
3 青岛秀山移动测量有限公司,山东 青岛 266510
车载移动测量系统是一种多传感器高度集成的测量设备,系统精度不仅取决于集成的传感器精度,还受激光扫描仪与组合导航系统之间安置参数检校的准确度影响。考虑到安置参数检校方法的便捷、有效性以及系统最终精度评估,提出一种基于参考面特征约束的车载移动测量系统安置参数检校方法。该方法根据包含系统安置参数的激光扫描点定位方程,利用参考面上的激光扫描点到参考面方程距离偏差最小作为约束条件,同时考虑到安置参数旋转量与偏移量间存在相关性,采用分步解算方法将旋转和平移量进行分开求解。最后,通过采集检校场和外场数据进行系统内符合和外符合精度评估。实验结果表明:该方法能够有效的消除安置误差影响,检校后内符合精度为0.007 m,外符合精度为0.024 m。
车载移动测量系统 面特征约束 安置误差检校 vehicle mobile laser scanning system planar feature constraint boresight calibration 
红外与激光工程
2020, 49(7): 20190524
作者单位
摘要
1 中国科学院上海光学精密机械研究所 空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 自然资源部第二海洋研究所, 浙江 杭州 310012
4 山东科技大学, 山东 青岛 266590
机载激光雷达的海陆波形分类对于沿海地区及其变化性质的研究至关重要。提出了一种在原始的机载激光雷达回波上使用深度学习进行分类的方法。构建全连接神经网络和一维卷积神经网络(CNN), 在一个测量海域的数据集上进行训练和测试, 最优模型获得了99.6%的分类精度。该最优模型对来自不同测量海域的数据进行分类, 分类精度达到了95.6%,相比支持向量机方法, 处理速度提高了约52%。结果表明: 深度学习方法对机载激光雷达回波波形的分类具有较高的精度和速度, 它可以进一步作为通过机载激光测深技术对海底种类进行分类的候选方法。
海洋测深 激光雷达 分类 深度学习 bathymetry lidar classification deep learning 
红外与激光工程
2019, 48(11): 1113004
作者单位
摘要
1 中国科学院上海光学精密机械研究所空间激光传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
3 山东科技大学测绘科学与工程学院, 山东 青岛 266590
4 杭州中科天维科技有限公司, 浙江 杭州 310026
为了提高脉冲激光测距回波时刻解算方法的应用场景适应性,将回波时刻解算问题转换为波形分类的问题,采用深度学习的新方法实现回波时刻的解算。通过仿真模拟计算产生0.1 ns时间分辨率的不同距离、信号幅度、波形形状和噪声的样本回波数据,训练一维卷积神经网络模型,在样本测试集上获得了99.85%的分类精度;采用深度学习方法和高斯拟合方法处理同样的机载激光雷达回波数据,墙面线扫数据解算结果相关系数为0.99981,外场飞行试验数据平面拟合残差均在20 mm左右,两种方法回波时刻解算效果相当。结果表明,新方法能够满足机载脉冲激光测距回波时刻解算要求,具备进一步提高解算精度和适应更多应用场景的潜力。
遥感 脉冲激光测距 回波时刻解算 深度学习 卷积神经网络 激光雷达 
中国激光
2019, 46(10): 1010001
作者单位
摘要
1 山东科技大学 测绘科学与工程学院, 山东 青岛 266590
2 山东科技大学 海洋工程研究院, 山东 青岛266590
3 中国科学院上海光学精密机械研究所, 上海 201800
4 杭州中科天维科技有限公司, 上海 201800
5 国家海洋局第二海洋研究所, 浙江 杭州 310012
根据机载激光测深系统扫描部分结构,针对圆镜偏轴卵形扫描方式, 从光束发射方向出发, 基于扫描结构轴向关系利用光线反射定律推导出激光出射方向向量, 结合激光出射位置到海表点距离获得海面激光点坐标; 依据光线折射定律, 利用变折射率光线追踪算法推导出海底测深点坐标计算公式, 建立海面激光入射点及海底测深点坐标严密计算模型。根据模型定位公式, 分析扫描系统视准轴误差影响, 通过数值模拟, 分析扫描系统视准轴误差对定位精度影响, 为扫描系统单体设备加工、装调、集成检校提供依据, 为机载雷达测深系统提供海底测点精确计算、改正提供参考。
机载激光雷达测深 测深定位模型 卵形扫描 视准轴误差 airborne lidar bathymetry bathymetry positioning model oval scanning boresight error 
红外与激光工程
2019, 48(6): 0606005
胡善江 1,2,3,*贺岩 1,3,4陈卫标 1,3朱小磊 1,3[ ... ]瞿帅 9
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学,北京 100049
3 中国科学院空间激光信息传输与探测技术实验室, 上海 201800
4 上海大恒光学精密机械有限公司, 上海 201800
5 杭州中科天维科技有限公司, 上海 201800
6 山东科技大学, 山东 青岛266590
7 国家海洋局第二海洋研究所, 浙江 杭州 310012
8 中国科学院遥感与数字地球研究所, 北京 100094
9 北京林业大学, 北京 100083
针对林业、建筑、近海、岛礁和滩涂的测绘要求, 中国科学院上海光学精密机械研究所开发了具有自主知识产权的机载双频激光雷达产品样机, 可以同时完成对陆地地形和海底地形进行测绘。该样机在三亚蜈支洲岛进行了飞行试验, 最大探测深度达到30 m, 等效一类水质条件下可达50 m, 最小探测深度达到0.22 m, 测深数据和单波束声呐数据对比中误差为0.108 m, 实地测量数据和陆地点云量测数据比对中误差为0.18 m, 试验结果基本符合设计预期, 为进一步产品定型打下了良好的基础。
双频激光雷达 海洋测绘 海底地形 dual-frequency lidar ocean mapping seabed topography 
红外与激光工程
2018, 47(9): 0930001
作者单位
摘要
1 国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
2 中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
3 山东科技大学测绘科学与工程学院, 山东 青岛 266590
4 中国海监南海航空支队, 广东 广州 510310
综合了已有的机载激光雷达测深系统的波形处理方法。基于国产多通道海洋激光雷达波形数据的多通道优势,运用去卷积、数值拟合和信号滤波等波形处理方法,针对不同类型的波形,提出了一套适用于国产硬件的波形处理方法。该方法可保证回波位置提取的稳健性。
遥感 激光雷达 测深系统 波形处理 波形分类 去卷积 数值拟合 信号滤波 
激光与光电子学进展
2018, 55(8): 082808
贺岩 1,2,3,*胡善江 1,2,4陈卫标 1,2朱小磊 1,2[ ... ]姚斌 3
作者单位
摘要
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院空间激光信息传输与探测技术实验室, 上海 201800
3 上海大恒光学精密机械有限公司, 上海 201800
4 中国科学院大学, 北京 100049
5 南京大学中国南海研究协同创新中心, 江苏 南京 210023
6 中国海监南海航空支队, 广东 广州 510310
7 杭州中科天维科技有限公司, 浙江 杭州 310026
8 山东科技大学测绘科学与工程学院, 山东 青岛 266590
9 国家海洋局第二海洋研究所, 浙江 杭州 310012
10 中国科学院遥感与数字地球研究所, 北京 100094
11 北京林业大学林学院, 北京 100083
机载双频激光雷达探测技术利用双波长激光实现海陆一体化测绘,从1969年至今,国际上已经形成了成熟的商业产品,应用于海洋、海岸带和岛礁的探测。中国科学院上海光学精密机械研究所从1998年开始,先后研发了三代机载双频激光雷达,完成了从原理样机阶段到产品样机阶段的转化。最新的Mapper5000系统在南海完成了11个架次的机载飞行试验,获得南海岛礁的三维地形数据,最大实测深度达到51 m,最浅水深达到0.25 m,测深精度为0.23 m,水平位置精度为0.26 m,海洋测点密度为1.1 m×1.1 m,陆地测点密度为0.25 m×0.25 m。
双频激光雷达 海陆一体化测绘 三维地形 
激光与光电子学进展
2018, 55(8): 082801

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!