光学 精密工程, 2012, 20 (5): 1064, 网络出版: 2012-08-08  

压电双晶片扫描器的低温迟滞蠕变特性

Cryogenic hysteresis and creep characteristics of piezoelectric bimorph scanner
张旋 1,*潘鸣 2
作者单位
1 中国科学院 上海技术物理研究所,上海 200083
2 中国电子科技集团公司 第五十研究所,上海 200063
摘要
研究了用于空间红外相机低温光学系统的压电双晶片扫描器的低温迟滞蠕变问题。压电双晶片具有行程大,不发热,在低温下仍然能够工作等优点,然而由于压电陶瓷固有的迟滞蠕变特性,使得其扫描精度受到了较大的影响。本文在常温和低温下,对所研制的压电双晶片扫描器的迟滞和蠕变特性进行实验研究和特性对比。结果显示:尽管压电双晶片扫描器的迟滞量和蠕变量均有大幅度下降,但由于总行程的下降幅度更大,使得迟滞度和蠕变系数有较大上升; 120 K下的迟滞度约为300 K下的2倍,120 K下的蠕变系数比300 K下的上升了一个数量级。低温下压电双晶片扫描器的迟滞和蠕变特性相比常温下更加严重,这给其在低温下的高精度应用带来了更大的影响。
Abstract
The cryogenic hysteresis and creep characteristics of piezoelectric bimorph scanners for cryogenic optical systems in space infrared cameras were studied. The piezoelectric bimorph has superior characteristics of large displacement, high resolution, no self-heating, etc., moreover, it can work efficiently at a cryogenic temperature. However,the inherent hysteresis and creep characteristics of the piezoelectric bmorph have a large impact on the scanning accuracy when it is used for high precision scanning. In this paper, the hysteresis and creep characteristics of a fabricated piezoelectric bimorph scanner were experimentally studied at room temperature and cryogenic temperature and the results were compared. The results indicate that both hysteresis displacement and creep displacement of the piezoelectric bimorph scanner have a large decrease, but the decrease of total travel displacement is much larger, which leads the hysteresis rate and creep coefficient increase more large. The hysteresis rate at 120 K is twice that at 300 K and the creep coefficient at 120 K increases by an order of magnitude as compared with that at 300 K. Results mean that the hysteresis and creep characteristics of piezoelectric bimorph scanner at cryogenic temperature are more serious than it at room temperature, which will bring greater impact when it is used for high precision applications.
参考文献

[1] 王岳宇, 赵学增. 补偿压电陶瓷迟滞和蠕变的逆控制算法[J]. 光学 精密工程, 2006, 14(6): 1032-1040.

    WANG Y Y, ZHAO X Z. Inverse control algorithm to compensate the hysteresis and creep effect of piezoceramic[J]. Opt. Precision Eng., 2006, 14(6): 1032-1040. (in Chinese)

[2] 范伟, 余晓芬. 压电陶瓷驱动器蠕变特性的研究[J]. 仪器仪表学报, 2006, 27(11): 1383-1386.

    FAN W, YU X F. Study on PZT actuator creep characteristics[J]. Chinese Journal of Scientific Instrument, 2006, 27(11): 1383-1386. (in Chinese)

[3] 张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学 精密工程, 1998, 6(5): 26-32.

    ZHANG T, SUN L N, CAI H G. Study on the fundamental characteristics of piezoelectric element[J]. Opt. Precision Eng., 1998, 6(5): 26-32. (in Chinese)

[4] JUNG H, GWEON D G. Creep characteristics of piezoelectric actuators[J]. Review of Scientific Instrument, 2000, 71(4): 1896-1900.

[5] RU C H, SUN L N. Hysteresis and creep compensation for piezoelectric actuator in open-loop operation[J]. Sensors and Actuators A, 2005, 122(1): 124-130.

[6] 高亮, 阚珊珊, 李敏, 等. 压电陶瓷精密转动平台的转角精度测量[J]. 光学 精密工程, 2007, 15(2): 206-211.

    GAO L, KAN SH SH, LI M, et al.. Rotation-angle-accuracy measurement of piezo tilt platform[J]. Opt. Precision Eng., 2007, 15(2): 206-211. (in Chinese)

[7] ZHANG X, ZHAO G F, PAN M. The research of piezoelectric actuator for cryogenic scanning application[C]. Proceedings of SPIE, 2011,8193∶819332-1-819332-7.

[8] 南卫东, 刘承, 朱成武, 等. 位置传感器PSD及其在光扫描动态测试中的应用[J]. 仪器仪表学报, 1995, 16(4): 393-397.

    NAN W D, LIU CH, ZHU CH W, et al.. Position-Sensitive Detector (PSD) and its application in the optical scanning dynamics testing[J]. Chinese Journal of Scientific Instrument, 1995, 16(4): 393-397. (in Chinese)

[9] 李福良. 基于PA85的新型压电陶瓷驱动电源[J]. 压电与声光, 2005, 27(4): 392-395.

    LI F L. A new power supply for piezoelectric ceramic based on PA85[J]. Piezoelectrics & Acoustooptics, 2005, 27(4): 392-395. (in Chinese)

[10] SMITH R C, HOM C L. Domain wall theory for ferroelectric hysteresis[J]. Journal of Intelligent Material Systems and Structures, 1999, 10(3): 195-213.

张旋, 潘鸣. 压电双晶片扫描器的低温迟滞蠕变特性[J]. 光学 精密工程, 2012, 20(5): 1064. ZHANG Xuan, PAN Ming. Cryogenic hysteresis and creep characteristics of piezoelectric bimorph scanner[J]. Optics and Precision Engineering, 2012, 20(5): 1064.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!