红外与激光工程, 2016, 45 (10): 1018004, 网络出版: 2016-11-14   

适用于FSM系统的菱形微位移放大机构设计

Design of rhomboid micro stroke amplifier for FSM system
方楚 1,2,3郭劲 1,2徐新行 1,3姜振华 1,2王挺峰 1,2
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 激光与物质相互作用国家重点实验室, 吉林 长春 130033
3 中国科学院大学, 北京 100049
摘要
为了增加压电陶瓷驱动快速反射镜的偏摆范围, 对菱形微位移放大机构进行了研究设计。首先介绍了菱形结构的放大原理并利用变形能法分析了影响菱形结构性能的关键参数, 然后建立了快速反射镜系统要求与菱形结构设计要求之间的联系, 并根据自行设计的快速反射镜系统选择了菱形结构的关键参数, 最后通过有限元仿真对菱形结构和快速反射镜系统进行了模态分析并对快速反射镜的偏摆范围进行了实验测试。仿真与实验结果表明, 快速反射镜的偏摆范围大于 6′, 低阶谐振频率约为400 Hz, 满足了快速反射镜的系统要求。文中研究得出, 菱形结构的位移放大倍率与最大驱动力是此消彼长的两个性能, 可以通过合理调整菱形长轴与菱形边夹角以及菱形边宽度使两个性能同时满足系统设计要求。
Abstract
Rhomboid micro stroke amplifier was designed in order to raise the tilting range of fast steering mirror driven by piezoelectric. Firstly, the theory of stroke amplifier was expounded and the key factors were analyzed with the help of energy method. Secondly, the connection between the performance requirement of fast steering mirror system and key factors of rhomboid mechanism was built. Then, key factors were resolved for self-designed fast steering mirror system. Finally, mode finite element analysis was made for both rhomboid mechanism and fast steering mirror and the experiment was carried out for testing the tilting range of fast steering mirror. The analysis and experiment shows that the tilting range is more than 6′ and the frequency of first mode is about 400 Hz which satisfied the need of fast steering mirror system. The conclusion is that the multiple and the maximum driving force of rhomboid mechanism conflict with each other which can be coordinated by resolving the key factors of rhomboid micro stroke amplifier in order to meet the need of the whole system.
参考文献

[1] Xin Wu, Sihai Chen, Wei Chen, et al. Large angle and high linearity two dimensional laser scanner based on voice coil actuators[J]. Review of Scientific Instruments, 2011, 82(105103): 1-7.

[2] 徐新行, 高云国, 杨洪波, 等. 车载大口径刚性支撑式快速反射镜[J]. 光学 精密工程, 2014, 22(1): 117-124.

    Xu Xinhang, Gao Yunguo, Yang Hongbo, et al. Large diameter fast steering mirror on rigid support technology for dynamic platform[J]. Optics and Precision Engineering, 2014, 22(1): 117-124. (in Chinese)

[3] 周子云, 高云国, 邵帅, 等. 采用柔性铰链的快速反射镜设计[J]. 光学 精密工程, 2014, 22(6): 1547-1554.

    Zhou Ziyun, Gao Yunguo, Shao Shuai, et al. Design of fast steering mirror using flexible hinge[J]. Optics and Precision Engineering, 2014, 22(6): 1547-1554. (in Chinese)

[4] 杨守旺, 万秋华, 孙莹, 等. 音圈电机驱动的航空相机相面扫描系统[J]. 红外与激光工程, 2014, 43(5): 1540-1544.

    Yang Shouwang, Wan Qiuhua, Sun Ying, et al. Image scanning system of aerial camera base on VCM[J]. Infrared and Laser Engineering, 2014, 43(5): 1540-1544. (in Chinese)

[5] Kluk D J. An advanced fast steering mirror for optical communication[D]. Boston: Massachusetts Institute of Technology, 2007.

[6] 吴鑫. 高性能快速控制反射镜研究[D]. 武汉: 华中科技大学, 2012.

    Wu Xin. Research on high-performance fast steering mirror[D]. Wuhan: Huazhong University of Science and technology, 2012. (in Chinese)

[7] Yuan Gang, Wang Daihua, Li Shidong. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sensors and Actuators A: Physics, 2015, 235: 292.

[8] 廖洪波, 范世珣, 黑墨, 等. 光电稳定平台伺服系统动力学建模与参数辨识[J]. 光学 精密工程, 2015, 23(2): 477-485.

    Liao Hongbo, Fan Shixun, Hei Mo, et al. Modeling and parameter identification for electro-optical stabilized platform servo systems[J]. Optics and Precision Engineering, 2015, 23(2): 477-485. (in Chinese)

[9] Zhu Wei, Bian Leixiang, An Yi, et al. Modeling and control of a two-axis fast steering mirror with piezoelectric stack actuators for laser beam tracking[J]. Smart Materials and Structures, 2015, 24: 075014.

[10] Wang Geng, Rao Changhui. Adaptive control of piezoelectric fast steering mirror for high precision tracking application[J]. Smart Materials and Structures, 2015, 24: 035019.

[11] 杨志刚, 刘登云, 吴丽萍, 等. 应用于压电堆叠泵的微位移放大机构[J]. 光学 精密工程, 2007, 15(6): 884-888.

    Yang Zhigang, Liu Dengyun, Wu Liping, et al. Micro-displacement magnifying mechanism used in piezo-stack pump[J]. Optics and Precision Engineering, 2007, 15(6):884-888. (in Chinese)

[12] Yeom Taiho, Simon Terrence W, Zhang Min, et al. High frequency, large displacement and low power consumption piezoelectric translation actuator based on an oval loop shell[J]. Sensors and Actuators A: Physics, 2012, 176: 99-109.

[13] 金忠谋. 材料力学[M]. 北京: 机械工业出版社, 2008.

    Jin Zhongmou. Machnics of Materials[M]. Beijing: China Machine Press, 2008. (in Chinese)

[14] 方楚, 郭劲, 徐新行, 等. 压电陶瓷驱动FSM三自由度柔性支撑设计[J]. 红外与激光工程, 2015, 44(10): 2987-2995.

    Fang Chu, Guo Jin, Xu Xinhang, et al. Design of three DOFs flexure support for FSM driven by piezoelectric ceramics[J]. Infrared and Laser Engineering, 2015, 44(10): 2987-2995. (in Chinese)

方楚, 郭劲, 徐新行, 姜振华, 王挺峰. 适用于FSM系统的菱形微位移放大机构设计[J]. 红外与激光工程, 2016, 45(10): 1018004. Fang Chu, Guo Jin, Xu Xinhang, Jiang Zhenhua, Wang Tingfeng. Design of rhomboid micro stroke amplifier for FSM system[J]. Infrared and Laser Engineering, 2016, 45(10): 1018004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!