强激光与粒子束, 2010, 22 (12): 2979, 网络出版: 2011-01-05   

基于多尺度变换的动态光散射粒径反演范围的自适应调整

Self-adaptive adjustment of inverse range of dynamic light scattering particle sizing based on multi-scale transform
作者单位
1 山东理工大学 电气与电子工程学院, 山东 淄博 255091
2 上海理工大学 光学与电子信息工程学院, 上海 200093
3 山东理工大学 电气与电子工程学院, 山东 淄博 255091,
摘要
通过多尺度变换实现了反演范围的自适应调整, 使其更接近真实范围。分别采用反演范围固定算法与自适应算法对200~600 nm单峰和200~900 nm双峰分布颗粒的模拟相关函数进行了反演, 结果表明:自适应算法的结果更接近理论分布, 抗干扰能力更强。相对于固定算法, 单峰分布颗粒最多可缩小峰值误差4.73%,缩小峰宽误差185 nm。双峰分布颗粒在0~0.001噪声水平时, 峰值误差分别小于11.33%,12.45%, 峰宽误差分别小于35,160 nm, 而固定算法在噪声水平大于0.000 1时, 难以得到合理的反演结果。反演范围自适应调整方法能够有效优化粒径反演结果。
Abstract
By the multi-scale transform inverse range can be self-adaptively adjusted so that inverse range is closer to the true range. The simulative autocorrelation functions (ACF) of unimodal distribution particles of 200~600 nm and bimodal distribution particles of 200~900 nm were respectively inversed by the fixed and the self-adaptive algorithm of inverse range. Comparing to the inverse results of fixed algorithm, that of the self-adaptive algorithm is much closer to theory distribution and its tolerance of noises is stronger, for unimodal distribution particles, it can at most reduce peak value error 4.73% and peak width error 185 nm, for bimodal distribution particles, when noise levels are 0~0.001, its peak value errors are less than11.33%,12.45% and its peak width errors are less than 35,160 nm, however, when the noise level is greater than 0.0001, fixed algorithm can't get the reasonable results. Therefore, this self-adaptive adjustment method of inverse range can effectively optimize the inverse results.
参考文献

[1] Takahashi K, Kato H, Saito T, et al.Precise measurement of the size of nanoparticles by dynamic light scattering with uncertainty analysis[J]. Part Part Syst Charact, 2008,25(3): 31-38.

[2] 成艳亭,申晋,刘伟,等. 多tau光子相关器中自相关函数的归一化方法研究[J].中国激光,2009,36(2):444-448.(Cheng Yanting, Shen Jin, Liu Wei, et al. Normalization of autocorrelation function for multiple-tau photon correlator. Chin J Laser,2009,36(2):444-448)

[3] Dahneke B E. Measurement of suspended particles by quasi-elastic light scattering[M]. New York:Wiley, 1983:133-155,211-233.

[4] Brown W. Dynamic light scattering:the method and some applications[M].Oxford: Clarendon Press,1993:199-201,203-211.

[5] Shibayama M, Karino T, Okabe S. Distribution analyses of multi-modal dynamic light scattering data[J].Polymer, 2006,47(18): 6446-6456.

[6] Fernandes M X J J, Santos N C, Castanho M A R B. Continuous particle size distribution analysis with dynamic light scattering MAXAMPER: A regularization method using the maximum amplitude for the average error and the Lagrange’s multipliers method[J]. J Biochem Biophys Meth, 1998,36(2):,101-117.

[7] 王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社, 2000:299.(Wang Naining. Optical measurement technology of particle size and application. Beijing: Atomic Energy Press,2000:299)

[8] Fu H S, Han B, Gai G Q. A wavelet multiscale-homotopy method for the inverse problem of two-dimensional acoustic wave equation[J]. Applied Mathematics and Computation, 2007, 190(1): 576-582.

[9] 邓义君,严高师.一种基于小波变换的红外小目标去噪算法[J].强激光与粒子束, 2007,19(3):399-402.(Deng Yijun,Yan Gaoshi. De-noising algorithm of infrared small target based on wavelet transforms. High Power Laser and Particle Beams, 2007,19(3):399-402)

[10] 刘继军.不适定问题的正则化方法及应用[M].北京:科学出版社,2005:46-55.(Liu Jijun. Regularization method of ill-posed problem and its application. Beijing: Science Press,2005: 46-55)

[11] Yu A B, Standish N. A study of particle size distribution[J].Power Technol, 1990,62(2):101-118.

王雅静, 申晋, 郑刚, 孙贤明, 刘伟. 基于多尺度变换的动态光散射粒径反演范围的自适应调整[J]. 强激光与粒子束, 2010, 22(12): 2979. Wang Yajing, Shen Jin, Zheng Gang, Sun Xianming, Liu Wei. Self-adaptive adjustment of inverse range of dynamic light scattering particle sizing based on multi-scale transform[J]. High Power Laser and Particle Beams, 2010, 22(12): 2979.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!