发光学报, 2013, 34 (9): 1149, 网络出版: 2013-09-17  

MgZnO半导体材料光致发光以及共振拉曼光谱研究

Study of MgZnO Semiconductor Materials Using Photoluminescence and Resonance Raman Spectroscopy
作者单位
1 中山大学理工学院 光电材料国家重点实验室, 广东 广州510000
2 香港科技大学 物理系, 香港
摘要
用分子束外延设备在c面蓝宝石衬底上生长得到高质量MgxZn1-xO薄膜。X射线衍射显示, 当Mg摩尔分数在0~32.7%范围内时, 薄膜保持六方结构, (002)衍射峰半高宽为0.08°~0.12°, 薄膜结晶质量与现有报道的最高水平相当。随着薄膜中Mg含量的增加,紫外发光峰由378 nm蓝移至303 nm。对Mg0.108Zn0.892O薄膜变温光致发光光谱的研究发现, 束缚激子发光随温度变化存在两个不同的猝灭过程。对不同Mg含量薄膜共振拉曼光谱的研究发现, A1(LO)声子模频移与Mg含量在一定范围内呈线性关系, 这为确定MgxZn1-xO薄膜中的Mg含量提供了一种简单高效的方法。通过拉曼光谱与X射线衍射对比研究发现, 拉曼光谱在确定MgZnO材料相变时具有更高的灵敏度。最后, 研究了Mg0.057Zn0.943O薄膜的变温共振拉曼光谱, 对A1(LO)和A1(2LO)声子模随温度而变化的现象给出了一定的理论解释。
Abstract
High-quality MgxZn1-xO semiconductor materials had been grown using plasma-assisted molecular beam epitaxy (P-MBE) on c-plane sapphire substrate by inserting special metal buffer layers. X-ray diffraction results show that the MgZnO films keep hexagonal structure when the mole fraction of Mg varies from 0 to 32.7%, and the full width at half maximum (FWHM) of the films are 0.08°~0.12°. To the best of our knowledge, the crystal quality should be one of the highest level ever reported. With the increasing of Mg content in the films, the room-temperature photoluminescence (PL) of ultraviolet emission peaks are shifted from 378 nm to 303 nm. A detailed study on Mg0.108Zn0.892O film by temperature-dependent photoluminescence shows that the bound exciton emitting has two different quenching processes with the temperature increasing. In addition, resonance Raman spectroscopy indicates that there is a linear relationship between the content of Mg in the films and the A1(LO) phonon mode frequency shift. This relationship provides a simple and efficient method to determine Mg content in MgxZn1-xO films. It is found that Raman spectroscopy is more sensitive to the component phase change than the X-ray diffraction characterization. Finally, the temperature-dependent Raman spectroscopy was employed for Mg0.057Zn0.943O and a theoretical explanation of A1 (LO) and A1 (2LO) phonon mode frequency shift with temperature was given and discussed.
参考文献

[1] Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72(25):3270-3272.

[2] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.

[3] Look D C. Recent advances in ZnO materials and devices [J]. Mater. Sci. Eng. B, 2001, 80(1-3):383-387.

[4] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4(1):42-46.

[5] Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.

[6] Ryu Y R, Lee T S, Lubguban J A, et al. Wide-band gap oxide alloy:BeZnO [J]. Appl. Phys. Lett., 2006, 88(5):052103-1-3.

[7] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films [J]. Appl. Phys. Lett., 2001, 78(9):1237-1239.

[8] Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Appl. Phys. Lett., 2008, 93(17):173505-1-3.

[9] Du X, Mei Z, Liu Z, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21(45):4625-4630.

[10] Wei Z P, Wu C X, Lu Y M, et al. MgxZn1-xO alloy grown by P-MBE and optical properties of MgZnO/ZnO heterostructure [J]. Chin. J. Lumin.(发光学报), 2006, 27(5):832-833 (in Chinese).

[11] Chen J, Shen W Z, Chen N B, et al. The study of composition non-uniformity in ternary MgxZn1-xO thin films [J]. J. Phys., 2003, 15(30):475-482.

[12] Zhu H, Shan C X, Li B H, et al. Enhanced photoluminescence caused by localized excitons observed in MgZnO alloy [J]. J. Appl. Phys., 2009, 105(10):103508-1-5.

[13] Li X P, Guo P J, Su S C, et al. Investigation on near band edge UV luminescence of ZnO thin films [J]. Chin. J. Lumin. (发光学报), 2012, 33(5):482-485 (in Chinese).

[14] Wu C X, Lu Y M, Li B H, et al. Structure and optical properties of MgxZn1-xO single-crystal thin films grown by P-MBE [J]. Chin. J. Lumin.(发光学报), 2004, 25(3):277-281 (in Chinese).

[15] Bimberg D, Sondergeld M, Grobe E. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs [J]. Phys. Rev. B, 1971, 4(10):3451-3455.

[16] Bundesmann C, Rahm A, Lorenz M, et al. Infrared optical properties of MgxZn1-xO thin films (0 ≤ x≤1):Long-wavelength optical phonons and dielectric constants [J]. J. Appl. Phys., 2006, 99(11):113504-1-12.

[17] Chichibu S, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures [J]. Appl. Phys. Lett., 1996, 69(27):4188-4190.

[18] Bergman L, Alexson D, Murphy P L, el al. Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure [J]. Phys. Rev. B, 1999, 59(20):12977-12982.

[19] Guo L L, Zhang Y H, Shen W Z. Temperature dependence of Raman scattering in GaMnN [J]. Appl. Phys. Lett., 2006, 89(16):161920-1-3.

[20] Link A, Bitzer K, Limmer W, et al. Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN [J]. J. Appl. Phys., 1999, 86(11):6256-6260.

[21] Huang Y, Liu M, Li Z, et al. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process [J]. Mater. Sci. Eng. B, 2003, 97(2):111-116.

王玉超, 吴天准, 张权林, 陈明明, 苏龙兴, 汤子康. MgZnO半导体材料光致发光以及共振拉曼光谱研究[J]. 发光学报, 2013, 34(9): 1149. WANG Yu-chao, WU Tian-zhun, ZHANG Quan-lin, CHEN Ming-ming, SU Long-xing, TANG Zi-kang. Study of MgZnO Semiconductor Materials Using Photoluminescence and Resonance Raman Spectroscopy[J]. Chinese Journal of Luminescence, 2013, 34(9): 1149.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!