光学技术, 2018, 44 (4): 495, 网络出版: 2018-08-30  

模拟研究p型a-Si∶H对HIT太阳电池性能的影响

Simulation Study of Influences of p-type a-Si∶H on the performance of HIT Solar Cells
作者单位
运城学院 物理与电子工程系 , 山西 运城 044000
摘要
使用AFORS-HET软件模拟研究HIT太阳电池能带结构, 讨论了发射区p型反转层的形成及影响因素, 及其对电池性能的影响。结果表明: 在n型单晶硅内, 与p型非晶硅异质结界面处, 形成p型反转层;p-Si∶H的掺杂浓度可调节费米能级位置, 进而影响反转层的形成。HIT电池类似于p-n同质结电池, p型反转层作为太阳电池发射层, 对太阳电池的性能起决定性作用。
Abstract
The HIT solar cell was analyzed and designed with AFORS-HET simulation method. According to its energy band structure, it is found that a p-type inversion layer is produced in the n-type crystal silicon (c-Si) near the front heterojunction interface. The constitution of the p-type inversion layer is adjusted by the Fermi level of the p-type hydrogenated amorphous silicon (a-Si∶H) layer, which can be controlled by changing its doping level. The HIT solar cell virtually acts like a p-n homojunction solar cell and p-type inversion layer functions as the cell emitter, which dominates the performance of the solar cell.
参考文献

[1] Kleider J P, Chouffot R, Gudovskikh A S, et al. Electronic and structural properties of the amorphous/crystalline silicon interface[J]. Thin Solid Films,2009,517(23): 6386-6391.

[2] Fujita K, Maruyama E. 24.7% Record efficiency HIT solar cell on thin silicon wafer[J]. IEEE Journal of Photovoltaics,2014,4(1):96-99.

[3] Adachi D, Hernández J L, Yamamoto K. Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency[J]. Applied Physics Letters,2015,107(23):233506.

[4] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics,2014,4(6):1433-1435.

[5] 任丙彦, 张燕, 郭贝, 等. n型单晶硅衬底上非晶硅/单晶硅异质结太阳电池计算机模拟[J]. 太阳能学报,2008,29(9):1112-1116.

    Ren Binyan, Zhang Yan, Guo Bei, et al. Computer simulation of a-Si∶H/c-Si heterojunction solar cells on n-type silicon crystalline[J]. Acta Energiae Solaris Sinica,2008,29(9):1112-1116.

[6] Ke C, Peters I M, Sahraei N, et al. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells[J]. Journal of Applied Physics,2015,117(24):245701.

[7] Peter Seif J, Descoeudres A, Filipic M, et al. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells[J]. Journal of Applied Physics,2014,115(2):024502.

[8] Zhang D, Deligiannis D, Papakonstantinou G, et al. Optical enhancement of silicon heterojunction solar cells with hydrogenated amorphous silicon carbide emitter[J]. IEEE Journal of Photovoltaics,2014,4(6):1326-1330.

[9] Zhang Y, Cong R, Zhao W, et al. Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells[J]. Science Bulletin,2016,61(10):787-793.

[10] Korte L, Conrad E, Angermann H, et al. Advances in a-Si∶H/c-Si heterojunction solar cell fabrication and characterization[J]. Solar Energy Materials and Solar Cells,2009,93(6-7):905-907.

[11] Varache R, Leendertz C, Gueunier-Farret M E, et al. Investigation of selective junctions using a newly developed tunnel current model for solar cell application[J]. Solar Energy Materials and Solar Cells,2015,141(10):14-23.

[12] Filipic M, Zachary C, Holman Z C, et al. Analysis of lateral transport through the inversion layer in amorphous silicon/crystalline silicon heterojunction solar cells[J]. Journal of Applied Physics,2013,114(7):074504.

[13] Maslova1 O, Brézard-Oudot A, Gueunier-Farret M E, et al. Understanding inversion layers and band discontinuities in hydrogenated amorphous silicon/crystalline silicon heterojunctions from the temperature dependence of the capacitance[J]. Applied Physics Letters,2010,97(25):252110.

[14] 何宇亮, 陈光华, 张仿清. 非晶态半导体物理学[M]. 北京: 高等教育出版社,1989.

    He Yuliang, Chen Guanghua, Zhang Fangqing. Amorphous semiconductor physics[M]. Beijing: Higher Education Press,1989.

[15] 赵雷, 周春兰, 李海玲, 等. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化[J]. 物理学报,2008,57(5):3212-3217.

    Zhao Lei, Zhou Chunlan, Li Hailing, et al. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation[J]. Acta Physica Sinica,2008,57(5):3212-3217.

[16] 白晓宇, 郭群超, 柳琴, 等. 缓冲层对p-a-Si/n-c-Si异质结太阳电池影响的计算分析[J]. 中国科学: 物理学 力学 天文学,2013,43(8):923–929.

    Bai Xiaoyu, Guo Qunchao, Liuqin, et al. Optimizing polymorphous silicon back surface field of p-a-Si/n-c-Si heterojunction solar cells by simulation[J]. Science China Physics, Mechanics and Astronomy,2013,43(8):923–929.

[17] 李力猛, 周炳卿, 陈霞, 等. μa-Si(n)/c-Si(p)异质结太阳电池微晶硅背场的模拟优化[J]. 信息记录材料,2009,10(3):18-21.

    Li Limeng, Zhou Bingqing, Chen Xia, et al. Back surface field of Mc-Si(n)/c-Si(p) heterojunction solar cells by simulation and optimization[J]. Information Recording Materials,2009,10(3):18-21.

张喜生, 晏春愉, 李霖峰, 吴体辉, 郭俊华, 姚陈忠. 模拟研究p型a-Si∶H对HIT太阳电池性能的影响[J]. 光学技术, 2018, 44(4): 495. ZHANG Xisheng, YAN Chunyu, LI Linfeng, WU Tihui, GUO Junhua, YAO Chenzhong. Simulation Study of Influences of p-type a-Si∶H on the performance of HIT Solar Cells[J]. Optical Technique, 2018, 44(4): 495.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!