激光与光电子学进展, 2018, 55 (5): 050006, 网络出版: 2018-09-11   

垂直腔面发射半导体激光器的特性及其研究现状 下载: 4504次

Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers
李玉娇 1,2宗楠 1,1*; *; 彭钦军 1
作者单位
1 中国科学院理化技术研究所中国科学院固体激光重点实验室, 北京 100190
2 中国科学院大学, 北京 100049
引用该论文

李玉娇, 宗楠, 彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状[J]. 激光与光电子学进展, 2018, 55(5): 050006.

Yujiao Li, Nan Zong, Qinjun Peng. Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006.

参考文献

[1] 华玲玲, 杨阳. 光泵浦垂直外腔面发射激光器特性及研究进展[J]. 材料导报A: 综述篇, 2013, 27(11): 64-69.

    Hua L L, Yang Y. Characteristics and development of optically pumped vertical external cavity surface emitting lasers[J]. Material Review A: Review, 2013, 27(11): 64-69.

[2] Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330.

[3] Zhou DL, Seurin JF, Xu GY, et al. Progress on high-power, high-brightness VCSELs and applications[C]. SPIE, 2015, 9381: 93810B.

[4] Zhao P. Xu B, van Leeuwen R, et al. Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling[J]. Optics Letters, 2014, 39(16): 4766-4768.

[5] Kuznetsov M, Hakimi F, Sprague R, et al. High power (>0.5 W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Photonics Technology Letter, 1997, 9(8): 1063-1065.

[6] Okhotnikov OG. Chapter 1: VECSELsemiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design[M]. New York: Wiley-VCH Verlag, 2010: 1- 71.

[7] Heinen B, Wang T L, Sparenberg M, et al. 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser[J]. Electronics Letters, 2012, 48(9): 516-517.

[8] 史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器阵列[J]. 光学精密工程, 2012, 20(1): 17-23.

    Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 2012, 20(1): 17-23.

[9] Zhou DL, Seurin JF, Xu GY, et al. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications[C]. SPIE, 2014: 172- 176.

[10] Seurin J F, Xu G, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays[J]. Proceedings of SPIE, 2009, 7229: 722903.

[11] Photonics Media. PR-HPIL-4800-W808 VCSEL illuminator[EB/OL].( 2013-08-27)[2017-11-06]https:∥www. photonics.com/Product.aspx?PID=5&VID=109&IID=722&PRID=54712.

[12] PrincetonOptronics. 4 W 850 nm VCSEL array[EB/OL].[2017-11-06]http:∥www.princetonoptronics.com/wp-content/uploads/PCW-SMV-4-W0850-datasheet2.pdf.

[13] Watkins L, Ghosh C, Seurin J F, et al. High-power vertical-cavity surface-emitting lasers for atomic clock applications[J]. SPIE Newsroom, 2015.

[14] D'Asaro L A. Seurin J F, Wynn J D. High-power, high-efficiency VCSELs pursue the goal[J]. Photonics Spectra, 2005, 39(2): 62-66.

[15] 王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.

    Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.

[16] Hou H Q, Choquette K D, Geib K M, et al. High-performance 1.06 μm selectively oxidized vertical-cavity surface-emitting lasers with InGaAs-GaAsP strain-compensated quantum wells[J]. IEEE Photonics Technology Letters, 1997, 9(8): 1057-1059.

[17] KageyamaT, TakakiK, ImaiS, et al. High efficiency 1060nm VCSELS for low power consumption[C]∥Proceedings of IEEE International Conference on Indium Phosphide and Related Materials, 2009, 109: 391- 396.

[18] Boehm G, Ortsiefer M, Shau R, et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 2003, 251(1): 748-753.

[19] Klem JF, Serkland DK, Geib KM. Advances in 1300 nm InGaAsN quantum well VCSELs[C]. SPIE, 2002, 4646: 137- 144.

[20] Nishida T, Takaya M, Kakinuma S, et al. 4.2 mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(5): 958-961.

[21] MichalzikR. VCSELs: Fundamentals, technology and applications of vertical-cavity surface-emitting lasers[M]. Berlin: Springer-Verlag, 2013: 353- 377.

[22] Omae K, Higuchi Y, Nakagawa K, et al. Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN Substrate[J]. Applied Physics Express, 2009, 2(5): 052101.

[23] Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 2011, 4(7): 072103.

[24] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (A) Applications and Materials Science, 2016, 213(5): 1170-1176.

[25] JohnsonK, Hibbs-BrennerM. High output power 670 nm VCSELs[C]. Proceedings of SPIE, 2007, 6484: 648404.

[26] Seurin JF, KhalfinV, Xu GY, et al. High-power red VCSEL arrays[C]. Proceedings of SPIE, 2013, 8639: 86390O.

[27] McInerney J G, Mooradian A, Lewis A, et al. . High-power surface emitting semiconductor laser with extended vertical compound cavity[J]. Electronics Letters, 2003, 39(6): 523-525.

[28] Shchegrov AV, UmbrasasA, Watson JP, et al. 532 nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers[C]. Proceedings of SPIE, 2004, 5332: 151- 156.

[29] WatsonJ, ShchegrovA, UmbrasasA, et al. Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers[C]. Proceedings of SPIE, 2004, 5364: 116- 121.

[30] Leeuwen RV, Seurin JF, Xu GY, et al. High power pulsed intracavity frequency doubled vertical extended cavity blue laser arrays[C]. Proceedings of SPIE, 2009, 7193: 71931D.

[31] 张立森. 大功率垂直腔面发射激光器的结构设计与研制[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2012.

    Zhang LS. Structure design and fabrication of high power vertical cavity surface emitting laser[D]. Changchun : Graduate University of Chinese Academy of Sciences(Changchun Institute of Optics, Fine Mechanics and Physics) , 2012.

[32] Kurdi M E, Bouchoule S, Bousseksou A, et al. Room-temperature continuous-wave laser operation of electrically-pumped 1.55 μm VECSEL[J]. Electronics Letters, 2004, 40(11): 671-672.

[33] Bousseksou A, Bouchoule S, Kurdi M E, et al. Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL[J]. Optical and Quantum Electronics, 2006, 38(15): 1269-1278.

[34] HärkönenA, BachmannA, ArafinS, et al. 2.34 μm electrically pumped VECSEL with buried tunnel junction[C]. Proceedings of SPIE, 2010, 7720: 772015.

[35] Zhang W, Ackemann T. McGinily S, et al. Operation of an optical in-well pumped vertical-external-cavity surface-emitting laser[J]. Applied Optics, 2006, 45(29): 7729-7735.

[36] Beyertt S S, Brauch U, Demaria F, et al. Efficient gallium-arsenide disk laser[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 869-875.

[37] Chilla J LA, Butterworth SD, ZeitschelA, et al. High power optically pumped semiconductor lasers[C]. Proceedings of SPIE, 2004, 5332: 143- 150.

[38] Rudin B, Rutz A, Hoffmann M, et al. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J]. Optics Letters, 2008, 33(22): 2719-2721.

[39] Lee J H, Kim J Y, Lee S M, et al. 9.1 W High-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2117-2119.

[40] Zhang F, Heinen B, Wichmann M, et al. A 23 watt single-frequency vertical-external-cavity surface-emitting laser[J]. Optics Express, 2014, 22(11): 12817-12822.

[41] KantolaE, LeinonenT, RantaS, et al. 1180 nm VECSEL with 50 W output power[C]. Proceedings of SPIE, 2015, 9349: 93490U.

[42] Leinonen T, Iakovlev V, Sirbu A, et al. 33 W continuous output power semiconductor disk laser emitting at 1275 nm[J]. Optics Express, 2017, 25(6): 7008-7013.

[43] Lyytikäinen J, Rautiainen J, Toikkanen L, et al. 1.3 μm optically-pumped semiconductor disk laser by wafer fusion[J]. Optics Express, 2009, 17(11): 9047-9052.

[44] Rautiainen J, Lyytikäinen J, Sirbu A, et al. 2.6 W optically-pumped semiconductor disk laser operating at 1.57 μm using wafer fusion[J]. Optics Express, 2008, 16(26): 21881-21886.

[45] Rantamäki A, Rautiainen J, Sirbu A, et al. 1.56 μm 1 watt single frequency semiconductor disk laser[J]. Optics Express, 2013, 21(2): 2355-2360.

[46] Lyytikäinen J, Rautiainen J, Sirbu A, et al. High-power 1.48 μm wafer-fused optically pumped semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(13): 917-919.

[47] Sirbu A, Rantamäki A, Saarinen E J, et al. High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband[J]. Optics Express, 2014, 22(24): 29398-29403.

[48] Hopkins J M, Hempler N, Rösener B, et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

[49] Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1501012.

[50] HollP, RattundeM, AdlerS, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]. SPIE, 2017, 10087: 1008705.

[51] Ishida A, Sugiyama Y, Isaji Y, et al. 2 W high efficiency PbS mid-infrared surface emitting laser[J]. Applied Physics Letters, 2011, 99(12): 121109.

[52] Khiar A, Volobuev V, Witzan M, et al. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers[J]. Applied Physics Letters, 2014, 104(23): 231105.

[53] RahimM, FelderF, FillM, et al. Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader[J]. Optics Letters, 33( 24): 3010- 3012.

[54] Debusmann R, Brauch U, Hoffmann V, et al. Spacer and well pumping of InGaN vertical cavity semiconductor lasers with varying number of quantum wells[J]. Journal of Applied Physics, 2012, 112(3): 033110.

[55] Baumgärtner S, Kahle H, Bek R, et al. Comparison of AlGaInP-VECSEL gain structures[J]. Journal of Crystal Growth, 2015, 414: 219-222.

[56] Mateo C M N, Brauch U, Kahle H, et al. . 2.5 W continuous wave output at 665 nm from a multipass and quantum-well-pumped AlGaInP vertical-external-cavity surface-emitting laser[J]. Optics Letters, 2016, 41(6): 1245-1248.

[57] Zhou H L, Diagne M, Makarona E, et al. Near ultraviolet optically pumped vertical cavity laser[J]. Electronics Letters, 2000, 36(21): 1777-1779.

[58] Zaugg C A, Gronenborn S, Moench H, et al. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser[J]. Applied Physics Letters, 2014, 104(12): 121115.

[59] Kornaszewski L, Maker G. Malcolm G P A, et al. SESAM-free mode-locked semiconductor disk laser[J]. Laser & Photonics Reviews, 2012, 6(6): 20-23.

[60] Quarterman A H, Wilcox K G, Apostolopoulos V, et al. A passively mode-locked external-cavity semiconductor laser emitting 60 fs pulses[J]. Nature Photonics, 2009, 3: 729-731.

[61] Wilcox K G, Quarterman A H, Apostolopoulos V, et al. 175 GHz, 400 fs-pulse harmonically mode-locked surface emitting semiconductor laser[J]. Optics Express, 2012, 20(7): 7040-7045.

[62] Rudin B, Wittwer V J. Maas D J H C, et al. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power[J]. Optics Express, 2010, 18(26): 27582-27588.

[63] Wilcox K G, Tropper A C, Beere H E, et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation[J]. Optics Express, 2013, 21(2): 1599-1605.

[64] Husaini S, Bedford R G. Graphene saturable absorber for high power semiconductor disk laser mode-locking[J]. Applied Physics Letter, 2014, 104(16): 161107.

[65] LubeigtW, BialkowskiB, Lin JP, et al. Commercial mode-locked vertical external cavity surface emitting lasers[C]. SPIE, 2017, 10087: 100870D.

[66] Scheller M, Baker C W, Koch S W, et al. High power dual-wavelength VECSEL based on a multiple folded cavity[J]. IEEE Photonics Technology Letters, 2017, 29(10): 790-793.

[67] Hoogland S, Dhanjal S, Tropper A C, et al. Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 2000, 12(9): 1135-1137.

[68] KottkeC, CasparC, JungnickeV, et al. High speed 160 Gb/s DMT VCSEL transmission using pre-equalization[C]. Optical Fiber Communication Conference, 2017, W41:W4I. 7.

[69] ChenX, HurleyJ, StoneJ, et al. Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm[C]∥Proceedings of IEEE Optical Fiber Communications Conference and Exhibition, 2016.

[70] Kuchta D M, Huynh T N, Doany F E, et al. Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link[J]. Journal of Lightwave Technology, 2016, 34(14): 3275-3282.

[71] Gierl C, Gruendl T, Debernardi P, et al. Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning[J]. Optics Express, 2011, 19(18): 17336-17343.

[72] Matsui Y, Vakhshoori D, Wang P D, et al. Complete polarization mode control of long-wave length tunable vertical-cavity surface-emitting lasers over 65 nm tuning, up to 14 mW output power[J]. IEEE Journal of Quantum Electronics, 2003, 39(9): 1037-1048.

[73] Jayaraman V, Cole G D, Robertson M, et al. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range[J]. Electronics Letters, 2012, 48(14): 867-869.

[74] 宗楠, 李成明, 陈亚辉, 等. 光泵垂直扩展腔面发射半导体激光器的研究进展[J]. 红外与激光工程, 2007, 36(6): 785-789.

    Zong N, Li C M, Chen Y H, et al. Research and progress of optically pumped semiconductor vertical-external-cavity surface-emitting lasers[J]. Infrared and Laser Engineering, 2007, 36(6): 785-789.

[75] Harkonen A. Antimonide disk lasers achieve multiwatt power and a wide tuning range[J]. SPIE Newsroom, 2009.

[76] Ouvrard A, Garnache A, Cerutti L, et al. Single-frequency tunable Sb-based VCSELs emitting at 2.3 μm[J]. IEEE Photonics Technology Letters, 2005, 17(10): 2020-2022.

[77] 蒋丽丹, 张晓华, 詹小红, 等. 倍频外腔面发射激光器研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090001.

    Jiang L D, Zhang X H, Zhan X H, et al. Progress in frequency- doubled external-cavity surface-emitting laser[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090001.

[78] Hunziker L E, Ihli C, Steingrube D S. Miniaturization and power scaling of fundamental mode optically pumped semiconductor lasers[J]. IEEE Journal of Selected Topics Quantum Electron, 2007, 13(3): 610-618.

[79] ChillaJ, Shu QZ, Zhou HL, et al. Recent advances in optically pumped semiconductor lasers[C]. SPIE, 2007, 6451: 645109.

[80] Chilla J LA, Zhou HL, WeissE, et al. Blue and green optically pumped semiconductor lasers for display[C]. SPIE, 2005, 5740: 41- 47.

[81] Rautiainen J, Härkönen A, Korpijärvi V M, et al. 2.7 W tunable orange-red GaInNAs semiconductor disk laser[J]. Optics Express, 2007, 15(26): 18345-18350.

[82] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380.

[83] Hessenius C, Lukowski M, Moloney J, et al. Tunable single-frequency yellow laser for sodium guidestar applications[J]. SPIE Newsroom, 2012.

[84] Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16): 20280-20287.

[85] YakshinM, HesseniusC, PrasadC, et al. A compact, efficient deep UV optically pumped VECSEL[C]. CLEO: Science and Innovations, 2017: SM3M. 4.

[86] Bedford RG, KolesikM, Chilla J L A, et al. Power-limiting mechanisms in VECSELs[C]. Proceedings of SPIE, 2005, 5814: 199- 208.

[87] 张鹏, 戴特力, 梁一平, 等. 垂直外腔面发射激光器抽运脉冲的优化设计[J]. 中国激光, 2013, 40(4): 0402001.

    Zhang P, Dai T L, Liang Y P, et al. Optimization of pump pulses in a vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2013, 40(4): 0402001.

[88] 刘向南, 王晓华, 王菲, 等. 双散热片结构光抽运垂直外腔面发射激光器的热特性分析[J]. 激光与光电子学进展, 2011, 48(9): 091404.

    Liu X N, Wang X H, Wang F, et al. Analysis of thermal characteristics in optically pumped semiconductor vertical-external-cavity surface-emitting laser with doubled heatspreader[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091404.

[89] Kaneda Y, Fan L, Hsu T C, et al. High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1795-1797.

[90] Park S H, Kim J, Jeon H, et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme[J]. Applied Physics Letters, 2003, 83(11): 2121-2123.

[91] Park S H, Jeon H. Microchip-type InGaN vertical external-cavity surface-emitting laser[J]. Optical Review, 2006, 13(1): 20-23.

[92] Leinonen T, Ranta S, Laakso A, et al. Dual-wavelength generation by vertical external cavity surface-emitting laser[J]. Optics Express, 2007, 15(20): 13451-13456.

[93] Leinonen T, Morozov Y A, Harkonen A, et al. Vertical external-cavity surface-emitting laser for dual-wavelength generation[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2508-2510.

[94] Illek S, Albrecht T, Brick P, et al. Vertical-external-cavity surface-emitting laser with monolithically integrated pump lasers[J]. IEEE Photonics Technology Letters, 2007, 19(24): 1952-1954.

[95] Bellancourt A R, Rudin B, et al. . Vertical integration of ultrafast semiconductor lasers[J]. Applied Physics B, 2007, 88(4): 493-497.

[96] 激光网. VCSEL激光器市场爆发: 国内能否分一杯羹?[EB/OL]. ( 2017-08-17)[2018-1-3]. http:∥laser.ofweek.com/2017-08/ART-240002-8420-30161487.html.

李玉娇, 宗楠, 彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状[J]. 激光与光电子学进展, 2018, 55(5): 050006. Yujiao Li, Nan Zong, Qinjun Peng. Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!