激光与光电子学进展, 2018, 55 (12): 120009, 网络出版: 2019-08-01   

硅光子阵列波导光栅器件研究进展 下载: 2001次

Research Progress in Silicon Photonic Arrayed Waveguide Grating Devices
作者单位
昆明理工大学理学院, 云南 昆明 650500
引用该论文

陈晓铃, 胡娟, 张志群, 马丽, 陈华, 方青. 硅光子阵列波导光栅器件研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120009.

Xiaoling Chen, Juan Hu, Zhiqun Zhang, Li Ma, Hua Chen, Qing Fang. Research Progress in Silicon Photonic Arrayed Waveguide Grating Devices[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120009.

参考文献

[1] 余金中. 硅光子学[M]. 北京: 科学出版社, 2010: 1-2, 282- 312.

    Yu JZ. Silicon photonics[M]. Beijing: Science Press, 2010: 1-2, 282- 312.

[2] Smit M K. New focusing and dispersive planar component based on an optical phased array[J]. Electronics Letters, 1988, 24(7): 385-386.

[3] Takahashi H, Suzuki S, Kato K, et al. Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution[J]. Electronics Letters, 1990, 26(2): 87-88.

[4] Dragone C. An N×N optical multiplexer using a planar arrangement of two star couplers[J]. IEEE Photonics Technology Letters, 1991, 3(9): 812-815.

[5] Ismail N, Sun F, Sengo G, et al. Improved arrayed-waveguide-grating layout avoiding systematic phase errors[J]. Optic Express, 2011, 19(9): 8781-8794.

[6] 原荣. 阵列波导光栅(AWG)器件及其应用[J]. 光通信技术, 2010, 34(1): 1-5.

    Yuan R. Arrayed waveguide grating component and its applications[J]. Optical Communication Technology, 2010, 34(1): 1-5.

[7] Adar R, Serbin M R, Mizrahi V. Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator[J]. Journal of Lightwave Technology, 1994, 12(8): 1369-1372.

[8] Sugita A, Kaneko A, Okamoto K, et al. Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides[J]. IEEE Photonics Technology Letters, 2000, 12(9): 1180-1182.

[9] Diemeer M B J, Spiekman L H, Ramsamoedj R, et al. . Polymeric phased array wavelength multiplexer operating around 1550 nm[J]. Electronics Letters, 1996, 32(12): 1132-1133.

[10] Barbarin Y. Leijtens X J M, Bente E A J M, et al. Extremely small AWG demultiplexer fabricated on InP by using a double-etch process[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2478-2480.

[11] 赵建宜, 陈鑫, 钱坤, 等. InP基16通道200 GHz阵列波导光栅的设计和制备[J]. 光学学报, 2013, 33(6): 0605002.

    Zhao J Y, Chen X, Qian K, et al. Design and fabrication of 16 channel 200 GHz InP based array waveguide gratings[J]. Acta Optica Sinica, 2013, 33(6): 0605002.

[12] Bogaerts W, Selvaraja S K, Dumon P, et al. Silicon-on-insulator spectral filters fabricated with CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33-34.

[13] Ohyama T, Doi Y, Kobayashi W, et al. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer[J]. Journal of Lightwave Technology, 2016, 34(3): 1038-1046.

[14] Zhang Z Q, Hu J, Chen H, et al. Low-crosstalk silicon photonics arrayed waveguide grating[J]. Chinese Optics Letters, 2017, 15(4): 041301.

[15] Castellan C, Tondini S, Mancinelli M, et al. Reflectance reduction in a whiskered SOI star coupler[J]. IEEE Photonics Technology Letters, 2016, 28(17): 1870-1873.

[16] Tondini S, Castellan C, Mancinelli M, et al. Methods for low crosstalk and wavelength tunability in arrayed-waveguide grating for on-silicon optical network[J]. Journal of Lightwave Technology, 2017, 35(23): 5134-5141.

[17] DumonP, Bogaerts W, van Thourhout D, et al. Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography[C]∥First IEEE International Conference on Group IV Photonics, IEEE, 2004: 28- 30.

[18] Li J, Kim T R, Kim H S, et al. Lossy waveguide design considering polarization dependency to reduce back reflection in 2×1 MMI combiners[J]. Optics Express, 2014, 22(21): 25953-25964.

[19] Ye T, Fu Y F, Qiao L, et al. Low-crosstalk Si arrayed waveguide grating with parabolic tapers[J]. Optics Express, 2014, 22(26): 31899-31906.

[20] Stanton EJ, VoletN, Bowers JE. Low-loss arrayed waveguide grating at 2.0 μm[C]∥Conference on Lasers and Electro-Optics, OSA, 2017: STh1M. 7.

[21] Dai D X, Shi Y C, He S L. Theoretical investigation for reducing polarization sensitivity in Si-nanowire-based arrayed-waveguide grating (de)multiplexer with polarization-beam-splitters and reflectors[J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 654-660.

[22] Dai D X, Fu X, Shi Y C, et al. Experimental demonstration of an ultra-compact Si-nanowire-based reflective arrayed-waveguide grating (de)multiplexer with photonic crystal reflectors[J]. Optics Letters, 2010, 35(15): 2594-2596.

[23] Okamoto K, Ishida K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors[J]. Optics Letters, 2013, 38(18): 3530-3533.

[24] Zou J, Lang T T, Le Z C, et al. Ultracompact silicon-on-insulator-based reflective arrayed waveguide gratings for spectroscopic applications[J]. Applied Optics, 2016, 55(13): 3531-3536.

[25] Kamei S, Kaneko A, Ishii M, et al. Crosstalk reduction in arrayed-waveguide grating multiplexer/demultiplexer using cascade connection[J]. Journal of Lightwave Technology, 2005, 23(5): 1929-1938.

[26] Pathak S, Vanslembrouck M, Dumon P, et al. Optimized silicon AWG with flattened spectral response using an MMI aperture[J]. Journal of Lightwave Technology, 2013, 31(1): 87-93.

[27] Bauters J F. Heck M J R, Demis J, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides[J]. Optics Express, 2011, 19(4): 3163-3174.

[28] Doerr C R, Chen L, Chen Y K, et al. Wide bandwidth silicon nitride grating coupler[J]. IEEE Photonics Technology Letters, 2010, 22(19): 1461-1463.

[29] Dai D X, Wang Z, Bauters J F, et al. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides[J]. Optics Express, 2011, 19(15): 14130-14136.

[30] Chen L, Doerr C R, Dong P, et al. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing[J]. Optics Express, 2011, 19(26): B946-B951.

[31] Doerr C R, Chen L, Buhl L L, et al. Eight-channel SiO2/Si3N4/Si/Ge CWDM receiver[J]. IEEE Photonics Technology Letters, 2011, 23(17): 1201-1203.

[32] Shang K, Pathak S, Qin C, et al. Low-loss compact silicon nitride arrayed waveguide gratings for photonic integrated circuits[J]. IEEE Photonics Journal, 2017, 9(5): 6601805.

[33] Itoh M, Kamei S, Ishii M, et al. Ultra-small 40-channel athermal arrayed-waveguide grating module with low-loss groove design[J]. Electronics Letters, 2008, 44(21): 1271-1272.

[34] Wang L, Bogaerts W, Dumon P, et al. Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides[J]. Applied Optics, 2012, 51(9): 1251-1256.

[35] Bogaerts W, Taillaert D, Dumon P, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires[J]. Optics Express, 2007, 15(4): 1567-1578.

[36] Pathak S, Vanslembrouck M, Dumon P, et al. Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs[J]. Optics Express, 2012, 20(26): B493-B500.

[37] 付旭, 冒进斌, 许吉, 等. 消除嵌入半波片的阵列波导光栅残留偏振敏感性的研究[J]. 光学学报, 2015, 35(11): 1113001.

    Fu X, Mao J B, Xu J, et al. Study of eliminating residual polarization sensitivity of array waveguide grating with an embedded half-wave plate[J]. Acta Optica Sinica, 2015, 35(11): 1113001.

[38] Yamada H, Nozawa M, Kinoshita M, et al. Vertical-coupling optical interface for on-chip optical interconnection[J]. Optics Express, 2011, 19(2): 698-703.

[39] Fang Q, Liow T Y, Song J, et al. Suspended optical fiber-to-waveguide mode size converter for silicon photonics[J]. Optics Express, 2010, 18(8): 7763-7769.

[40] Fang Q, Song J F, Luo X S, et al. Mode-size converter with high coupling efficiency and broad bandwidth[J]. Optics Express, 2011, 19(22): 21588-21594.

[41] Fang Q, Song J F, Luo X S, et al. Low loss fiber-to-waveguide converter with a 3-D functional taper for silicon photonics[J]. IEEE Photonics Technology Letters, 2016, 28(22): 2533-2536.

[42] 邱元武. 硅光子学[J]. 激光与光电子学进展, 2006, 43(9): 36-41.

    Qiu Y W. Silicon photonics[J]. Laser & Optoelectronics Progress, 2006, 43(9): 36-41.

[43] 周培基, 李智勇, 俞育德, 等. 硅基光子集成研究进展[J]. 物理学报, 2014, 63(10): 104218.

    Zhou P J, Li Z Y, Yu Y D, et al. Research progress of silicon-based photonic integration[J]. Acta Physica Sinica, 2014, 63(10): 104218.

[44] 安俊明, 张家顺, 王月, 等. 硅光子波分复用技术研究[J]. 激光与光电子学进展, 2014, 51(11): 110006.

    An J M, Zhang J S, Wang Y, et al. Study on wavelength division multiplexer for silicon photonics[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110006.

[45] Chen L, Doerr C R, Buhl L, et al. Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon[J]. IEEE Photonics Technology Letters, 2011, 23(13): 869-871.

[46] Yebo N A, Bogaerts W, Hens Z, et al. On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor[J]. IEEE Photonics Technology Letters, 2011, 23(20): 1505-1507.

陈晓铃, 胡娟, 张志群, 马丽, 陈华, 方青. 硅光子阵列波导光栅器件研究进展[J]. 激光与光电子学进展, 2018, 55(12): 120009. Xiaoling Chen, Juan Hu, Zhiqun Zhang, Li Ma, Hua Chen, Qing Fang. Research Progress in Silicon Photonic Arrayed Waveguide Grating Devices[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120009.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!