激光与光电子学进展, 2018, 55 (11): 111404, 网络出版: 2019-08-14   

基于遗传算法的激光切割镍基合金质量优化 下载: 916次

Quality Optimization of Laser-Cutted Ni-Based Alloys Based on Genetic Algorithm
张艺赢 1,**曹妍 1,***陈宇翔 2,*牟向伟 1
作者单位
1 大连海事大学航运经济与管理学院, 辽宁 大连 116026
2 辽宁科技大学应用技术学院, 辽宁 鞍山 114051
引用该论文

张艺赢, 曹妍, 陈宇翔, 牟向伟. 基于遗传算法的激光切割镍基合金质量优化[J]. 激光与光电子学进展, 2018, 55(11): 111404.

Yiying Zhang, Yan Cao, Yuxiang Chen, Xiangwei Mu. Quality Optimization of Laser-Cutted Ni-Based Alloys Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111404.

参考文献

[1] 冯威琦, 张云丰, 陶汪, 等. 高温合金/不锈钢异种材料T型接头激光穿透焊工艺研究[J]. 中国激光, 2012, 39(10): 1003003.

    Feng W Q, Zhang Y F, Tao W, et al. Dissimilar metals combination of superalloy/stainless steel in T-shape by laser penetration welding[J]. Chinese Journal of Lasers, 2012, 39(10): 1003003.

[2] 罗登, 路媛媛, 郭溪溪, 等. 单晶高温合金V槽的激光修复工艺研究[J]. 中国激光, 2016, 43(5): 0503001.

    Luo D, Lu Y Y, Guo X X, et al. Laser repairing process of V-groove in single-crystal superalloy[J]. Chinese Journal of Lasers, 2016, 43(5): 0503001.

[3] 明宪良, 陈静, 谭华, 等. 激光修复GH4169高温合金的持久断裂机制研究[J]. 中国激光, 2015, 42(4): 0403005.

    Ming X L, Chen J, Tan H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers, 2015, 42(4): 0403005.

[4] 陈宇翔, 高亮. 正交法分析激光切割高温合金钢工艺参数[J]. 激光与光电子学进展, 2016, 53(11): 111403.

    Chen Y X, Gao L. Analysis of processing parameters for laser cutting high-temperature alloy steel by orthogonal method[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111403.

[5] 于天驰, 陈宇翔, 岳鑫, 等. 交互作用优化激光切割镍基合金工艺参数[J]. 激光与光电子学进展, 2018, 55(2): 021413.

    Yu T C, Chen Y X, Yue X, et al. Parameters of laser cutting Ni-based alloy steel with factors interaction[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021413.

[6] 赵晋平, 彭玉海, 南永博, 等. 2Al2铝合金切割工艺参数分析与预测[J]. 陕西理工学院学报(自然科学版), 2017, 33(2): 28-33.

    Zhao J P, Peng Y H, Nan Y B, et al. Analysis and prediction of 2Al2 aluminum alloy cutting process parameter[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2017, 33(2): 28-33.

[7] 陈继民, 左铁钏. CO2激光三维方位切割的人工神经网络分析[J]. 中国激光, 2004, 31(2): 245-248.

    Chen J M, Zuo T C. Analysis of artificial neural network on 3D orientation CO2 laser cutting[J]. Chinese Journal of Lasers, 2004, 31(2): 245-248.

[8] 郭华锋, 李菊丽, 孙涛. 基于BP神经网络的光纤激光切割切口粗糙度预测[J]. 激光技术, 2014, 38(6): 798-803.

    Guo H F, Li J L, Sun T. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. Laser Technology, 2014, 38(6): 798-803.

[9] 李建敏, 李国柱, 王春明, 等. 基于MATLAB神经网络激光切割质量预测系统设计[J]. 应用激光, 2014, 34(2): 122-125.

    Li J M, Li G Z, Wang C M, et al. Design of quality prediction system of laser cutting based on MATLAB neural network[J]. Applied Laser, 2014, 34(2): 122-125.

[10] 丁华, 李炎蔚, 袁冬青. 反向传播人造神经网络预测激光微孔表面粗糙度[J]. 激光与光电子学进展, 2017, 54(1): 011407.

    Ding H, Li Y W, Yuan D Q. Roughness prediction of laser drilling pore surface based on back-propagation artificial neural networks[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011407.

[11] 童桂, 徐宏, 郁汉琪. 基于模拟退火的BP神经网络激光切割质量控制模型[J]. 机械设计与制造, 2016( 6): 85- 87.

    TongG, XuH, Yu HQ. Control model of laser cutting quality based on simulated annealing and BP neural network[J]. Machinery Design & Manufacture, 2012( 6): 85- 87.

[12] Badkar D S, Pandey K S, Buvanashekaran G. Development of RSM-and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1319-1338.

[13] Chaki S, Ghosal S. Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel[J]. Production Engineering, 2011, 5(3): 251-262.

[14] 曹凤国. 激光加工[M]. 北京: 化学工业出版社, 2015: 67.

    Cao FG. Laser beam machining[M]. Beijing: Chemical Industry Press, 2015: 67.

[15] 韩力群, 施彦. 人工神经网络理论及应用[M]. 北京: 机械工业出版社, 2016: 51- 52.

    Han LQ, ShiY. Artificial neural network theory and application[M]. Beijing: China Machine Press, 2016: 51- 52.

[16] 王小川, 史峰, 郁磊, 等. Matlab神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2013: 36- 38.

    Wang XC, ShiF, YuL, et al.Matlab neural networks 43 cases analysis[M]. Beijing: Beihang University Press, 2013: 36- 38.

[17] 郁胜过, 张玲, 谢玮霖, 等. 基于遗传算法与Zoom FFT的光频域反射仪快速高精度频谱分析[J]. 光学学报, 2017, 37(4): 0406003.

    Yu S G, Zhang L, Xie W L, et al. Fast and high-resolution spectrum analysis of optical frequency domain reflectometry based on genetic algorithm and Zoom FFT[J]. Acta Optica Sinica, 2017, 37(4): 0406003.

[18] 周祥燕, 张超, 匡尚奇, 等. 基于量子衍生遗传算法的光学薄膜结构分析[J]. 中国激光, 2017, 44(12): 1203002.

    Zhou X Y, Zhang C, Kuang S Q, et al. Analysis of optical thin film structure based on quantum-inspired genetic algorithm[J]. Chinese Journal of Lasers, 2017, 44(12): 1203002.

[19] 高航, 薛凌云. 基于改进遗传算法的反向传播神经网络拟合LED光谱模型[J]. 激光与光电子学进展, 2017, 54(7): 072302.

    Gao H, Xue L Y. Back propagation neural network based on improved genetic algorithm fitting LED spectral model[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072302.

张艺赢, 曹妍, 陈宇翔, 牟向伟. 基于遗传算法的激光切割镍基合金质量优化[J]. 激光与光电子学进展, 2018, 55(11): 111404. Yiying Zhang, Yan Cao, Yuxiang Chen, Xiangwei Mu. Quality Optimization of Laser-Cutted Ni-Based Alloys Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(11): 111404.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!