光学 精密工程, 2020, 28 (3): 584, 网络出版: 2020-05-12   

基于飞秒激光的可运动微结构加工与旋转驱动

Fabrication and rotation driving of movable microstructures based on femtosecond laser
作者单位
中国科学技术大学 精密机械与精密仪器系, 安徽 合肥 230027
引用该论文

袁宏伟, 饶生龙, 吴东, 李家文, 胡衍雷. 基于飞秒激光的可运动微结构加工与旋转驱动[J]. 光学 精密工程, 2020, 28(3): 584.

YUAN Hong-wei, RAO Sheng-long, WU Dong, LI Jia-wen, HU Yan-lei. Fabrication and rotation driving of movable microstructures based on femtosecond laser[J]. Optics and Precision Engineering, 2020, 28(3): 584.

参考文献

[1] MARUO S, TAKAURA A, SAITO Y. Optically driven micropump with a twin spiral microrotor [J]. Optics Express, 2009, 17(21): 18525-18532.

[2] JURADO-SNCHEZ B, ESCARPA A. Milli, micro and nanomotors: Novel analytical tools for real-world applications [J]. TrAC Trends in Analytical Chemistry, 2016, 84: 48-59.

[3] LI J X, THAMPHIWATANA S, LIU W J, et al.. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract [J]. ACS Nano, 2016, 10(10): 9536-9542.

[4] YANG L K, CAI K, SHI J, et al.. Significance tests on the output power of a thermally driven rotary nanomotor [J]. Nanotechnology, 2017, 28(21): 215705.

[5] XIA H, WANG J, TIAN Y, et al.. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization [J]. Advanced Materials, 2010, 22(29): 3204-3207.

[6] BALK A L, MAIR L O, MATHAI P P, et al.. Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles [J]. ACS Nano, 2014, 8(8): 8300-8309.

[7] SHAO L, KLL M. Light-driven rotation of plasmonic nanomotors [J]. Advanced Functional Materials, 2018, 28(25): 1706272.

[8] LIN X F, HU G Q, CHEN Q D, et al.. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency [J]. Applied Physics Letters, 2012, 101(11): 113901.

[9] AHN J, XU Z J, BANG J, et al.. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor [J]. Physical Review Letters, 2018, 121(3): 033603.

[10] KAYNAK M, OZCELIK A, NAMA N, et al.. Acoustofluidic actuation of in situ fabricated microrotors [J]. Lab on a Chip, 2016, 16(18): 3532-3537.

[11] 陈立国, 王兆龙, 卞雄恒.扇形电极微液滴分离的数字微流控芯片 [J].光学 精密工程, 2019, 27(9): 1919-1925.

    CHEN L G, WANG ZH L, BIAN X H. Micro-droplet split digital microfluidic device with fan-shaped electrode [J]. Opt. Precision Eng., 2019, 27(9): 1919-1925. (in Chinese)

[12] 邱亚军, 李金泽, 李传宇, 等.高通量数字化毛细管微阵列芯片 [J].光学 精密工程, 2019, 27(6): 1237-1244.

    QIU Y J, LI J Z, LI CH Y, et al.. High-throughput digital capillary microarray [J]. Opt. Precision Eng., 2019, 27(6): 1237-1244. (in Chinese)

[13] CHEN Q D, WU D, NIU L G, et al.. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization [J]. Applied Physics Letters, 2007, 91(17): 171105.

[14] LIM T W, SON Y, JEONG Y J, et al.. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length [J]. Lab on a Chip, 2011, 11(1): 100-103.

[15] MARUO S, IKUTA K, KOROGI H. Submicron manipulation tools driven by light in a liquid [J]. Applied Physics Letters, 2003, 82(1): 133-135.

[16] 潘登, 李家文, 杨亮, 等.水凝胶支架的飞秒激光全息加工 [J].光学 精密工程, 2017, 25(9): 2277-2282.

    PAN D, LI J W, YANG L, et al.. Femtosecond laser holograpic fabrication of hydrogel cell scaffold [J]. Opt. Precision Eng., 2017, 25(9): 2277-2282. (in Chinese)

[17] TOTTORI S, ZHANG L, QIU F, et al.. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport [J]. Advanced Materials, 2012, 24(6): 811-816.

[18] SOLOVEV A A, SMITH E J, BOFBUFON C C, et al.. Light-controlled propulsion of catalytic microengines [J]. Angewandte Chemie International Edition, 2011, 50(46): 10875-10878.

[19] 高红芳, 任煜轩, 刘伟伟, 等.酵母细胞在涡旋光阱中的旋转动力学研究 [J].中国激光, 2011, 38(4): 113-118.

    GAO H F, REN Y X, LIU W W, et al.. Rotation dynamics of yeast cell in vortex optical tweezers [J]. Chinese Journal of Lasers, 2011, 38(4): 113-118. (in Chinese)

[20] ZHANG CH, HU Y L, LI J W, et al.. An improved multi-exposure approach for high quality holographic femtosecond laser patterning [J]. Applied Physics Letters, 2014, 105(22): 221104.

[21] 杨亮.基于空间光调制器的飞秒激光并行加工技术研究[D].合肥: 中国科学技术大学, 2015.

    YANG L. Research on Parallel Femtosecond Laser Fabrication Technologies with Spatial Light Modulator [D]. Hefei: University of Science and Technology of China, 2015. (in Chinese)

[22] HAO X, KUANG C F, WANG T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy [J]. Journal of Optics, 2010, 12(11): 115707.

[23] GECEVIIUS M, DREVINSKAS R, BERESNA M, et al.. Single beam optical vortex tweezers with tunable orbital angular momentum [J]. Applied Physics Letters, 2014, 104(23): 231110.

[24] HERNE C M, CAPUZZI K M, SOBEL E, et al.. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams [J]. Optics Letters, 2015, 40(17): 4026-4029.

[25] LOKE V L, ASAVEI T, STILGOE A B, et al.. Driving corrugated donut rotors with Laguerre-Gauss beams [J]. Optics Express, 2014, 22(16): 19692-19706.

袁宏伟, 饶生龙, 吴东, 李家文, 胡衍雷. 基于飞秒激光的可运动微结构加工与旋转驱动[J]. 光学 精密工程, 2020, 28(3): 584. YUAN Hong-wei, RAO Sheng-long, WU Dong, LI Jia-wen, HU Yan-lei. Fabrication and rotation driving of movable microstructures based on femtosecond laser[J]. Optics and Precision Engineering, 2020, 28(3): 584.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!