红外技术, 2016, 38 (11): 914, 网络出版: 2016-12-20  

石墨平台微结构的纳米级红外光谱表征

Nanoscale Infrared Spectroscopy Characterization of Graphite Mesa Microstructure
史云胜 1,2,*刘秉琦 1杨兴 2,3
作者单位
1 军械工程学院电子与光学工程系,石家庄 050003
2 清华大学精密仪器系,北京 100084
3 清华大学精密测试技术及仪器国家重点实验室,北京 100084
摘要
具有原子级光滑平面的石墨平台微结构是实现特殊功能微机电器件、微系统的重要基础。石墨微结构的化学信息表征对微机电器件、微系统的制备及性能有着重要的意义。先使用原子力显微镜获得形貌信息,再使用纳米级红外光谱对微结构的不同区域进行表征,获得了多个特征位置的红外光谱。通过对红外光谱的分析发现相对于其他位置,石墨平台表面具有非常有序的碳六元环结构,并且吸附的水分子最少。而石墨平台微结构的边缘由于悬键及微加工等原因是吸附水分子最多的位置,石墨基底由于微加工的破坏已经不具有碳六元环结构。这些信息为了解微结构的化学状态提供了帮助,明确所处环境对石墨平台微结构不同位置的影响,能够指导微机电器件的制备与应用。
Abstract
The graphite mesa microstructure with the atomically flat surface is an important basis for the realization of the special function of MEMS devices and micro systems. Chemical information characterization of graphite microstructure has important significance on the manufacture and properties of MEMS devices and micro systems. Atomic force microscopy was used to obtain the morphology information, and then the different regions of the microstructure were characterized by the nanoscale infrared spectroscopy. Through the analysis of the infrared spectra, it is found that the surface of the graphite mesa has a very ordered carbon hexatomic ring structure with respect to the other places, and adsorbs least water molecules. The edge of the graphite mesa microstructure adsorbed most water molecules because of the dangling bond and microfabrication. The graphite substrate has no carbon hexatomic structure due to the destruction of the microfabrication. This information helps to understand the chemical state of the microstructure. Above information can make it clear that the influence of the environment on the different regions of graphite mesa microstructure and can also guide the manufacture and application of MEMS devices.
参考文献

[1] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 5887(321): 385-388.

[2] Novoselov K S. Graphene: materials in the flatland(Nobel Lecture)[J]. Angewandte Chemie, 2011, 50(31): 6986-7002.

[3] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters, 2008, 8(3): 902-907.

[4] Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.

[5] Fistul M V, Efetov K B. Electromagnetic-field-induced suppression of transport through n-p junctions in graphene[J]. Physical Review Letters, 2007, 98(25): 256803.

[6] ZHENG Q S, JIANG Q. Multiwalled carbon nanotubes as gigahertz oscillators[J]. Phys Rev Lett, 2002, 88:045503.

[7] 孙玉虹, 曹嘉峰, 王成, 等. 硅基MEMS 红外光源光谱特性测试研 究[J]. 红外技术, 2015, 37(4): 347-350.

    SUN Yuhong, CAO Jiafeng, WANG Cheng, et al. The testing research of spectral characteristics of silicon MEMS infrared source[J]. Infrared Technology, 2015, 37(4): 347-350.

[8] 周全, 汪岳峰, 魏大鹏. 基于蓝宝石基底转移石墨烯的中波红外透过 光谱分析[J]. 红外技术, 2014, 36(9): 695-699.

    ZHOU Quan, WANG Yuefeng, WEI Dapeng. Infrared transmission spectroscopy of transferred graphene on Sapphire[J]. Infrared Technology, 2014, 36(9): 695-699.

[9] 李晓静, 祖恩东. 有机宝石近红外光谱分析[J]. 红外技术, 2016, 38(2): 175-178.

    LI Xiaojing, ZU Endong. The Near-infrared spectrum analysis of organic gems [J]. Infrared Technology, 2016, 38(2): 175-178.

[10] 杨勇辉, 孙红娟, 彭同江, 等. 石墨烯薄膜的制备和结构表征[J]. 物理化学学报, 2011, 27(3): 736-742.

    YANG Yonghui, SUN Hongjuan, PENG Tongjiang, et al. Synthesis and structural characterization of graphene-based membranes[J]. Acta Phys. -Chim. Sin. 2011, 27(3): 736-742.

[11] 缪云坤, 刘海锋, 刘清海, 等. 鳞片石墨粒子红外消光性能数值计 算[J]. 红外技术, 2015, 37(3): 190-192.

    MIAO Yunkun, LIU Haifeng, LIU Qinghai, et al. Numerical calculation of infrared extinction performances of graphite flakes[J]. Infrared Technology, 2015, 37(3): 190-192.

[12] 杨勇辉, 孙红娟, 彭同江. 石墨烯的氧化还原法制备及结构表征[J]. 无机化学学报, 2010, 26(11): 2083-2090.

    YANG Yonghui, SUN Hongjuan, PENG Tongjiang. Synthesis and structural characterization of graphene by oxidation reduction[J]. Chinese Journal of Inorganic Chemistry. 2010, 26(11): 2083-2090.

[13] Acik M, Lee G, Mattevi C, et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J]. Nature Materials, 2010, 9(10): 840-845.

[14] Acik M, Lee G, Mattevi C, et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2011, 115(40): 19761-19781.

[15] KJOLLER K, PRATER C, SHETTY R. 纳米级红外光谱用于聚合物的 表征[J]. 生命科学仪器, 2011, 9(1): 11-14.

    KJOLLER K, PRATER C, SHETTY R. Polymer characterization using nanoscale infrared spectroscopy [J]. Life Science Instruments, 2011, 9(1): 11-14.

[16] LIU Z, YANG J, GREY F, et al. Observation of microscale superlubricity in graphite[J]. Physical Review Letters, 2012, 108(20): 205503.

[17] LU X, YU M, HUANG H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology, 1999, 10(3): 269.

[18] Curcio J A, Petty C C. The near infrared absorption spectrum of liquid water[J]. JOSA, 1951, 41(5): 302-304.

[19] Matcher S J, Cope M, Delpy D T. Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy[J]. Physics in Medicine and Biology, 1994, 39(1): 177.

[20] 王大志, 袁望治. 非晶氧化锆水合物红外研究[J]. 化学物理学报, 2000, 13(4): 481-486.

    WANG Dazhi, YUAN Wangzhi. Study on amorphous hydrous zirconia by infrared spectrum[J]. Chinese Journal of Chemical Physics, 2000, 13(4): 481-486.

[21] 陈城钊, 李平, 林璇英, 等. 纳米晶硅薄膜中氢含量及键合模式的红 外分析[J]. 物理学报, 2009, 58(4): 2565-2571.

    CHEN Chengzhao, LI Ping, LIN Xuanying, et al. Infrared analysis on hydrogen content and Si-H bonding configuration of hydrogenated nanocrystalline silicon thin films[J]. ACTA PHYSICA SINICA, 2009, 58(4): 2565-2571.

史云胜, 刘秉琦, 杨兴. 石墨平台微结构的纳米级红外光谱表征[J]. 红外技术, 2016, 38(11): 914. SHI Yunsheng, LIU Bingqi, YANG Xing. Nanoscale Infrared Spectroscopy Characterization of Graphite Mesa Microstructure[J]. Infrared Technology, 2016, 38(11): 914.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!