光学 精密工程, 2020, 28 (1): 60, 网络出版: 2020-03-25   

高速扫描激光共聚焦显微内窥镜图像校正

Image correction for high speed scanning confocal laser endomicroscopy
作者单位
中国科学院 苏州生物医学工程技术研究所 光与健康研究中心, 江苏 苏州 215163
摘要
使用往复式逐行扫描的方式可以提高激光共聚焦显微内窥镜的成像速度和数据利用率, 但这种扫描方式也会带来图像畸变和错位问题, 从而影响系统成像质量。受扫描畸变影响, 图像错位程度不一致, 后期处理难以得到理想的校正效果。本文基于共振振镜的运动规律, 推导了均匀空间采样过程中的采样时间函数, 通过非等时采样方法校正了振镜速度变化带来的横向畸变。利用互相关法评价图像错位程度, 采用遗传算法获得最优的采样开始时刻, 实现了图像错位的校正。最终通过调整采样开始时刻和时间间隔在数据采集环节校正了图像畸变和错位。为了验证图像畸变校正和错位校正效果, 本文搭建了基于往复式逐行扫描方式的激光共聚焦显微内窥成像系统。实验结果表明, 该方法能够有效地校正图像畸变和错位, 图像的横向分辨率。与现有方法相比, 本文方法将图像的局部分辨率由10 pixel提高到6 pixel。
Abstract
Reciprocating progressive scanning can improve the imaging speed and data utilization of confocal laser endomicroscopy.However, this scanning method can also create image distortion and dislocation, which affects the imaging quality of the system. In this study, the sampling time function during the anisochronous sampling process is deduced based on the movement rule of the galvanometric resonance scanner, and the horizontal distortion caused by speed changes in the galvanometric scanner is corrected. Moreover, the cross-correlation method is used to assess the degree of image dislocation. The genetic algorithm is used to obtain the optimal starting time of the sampling, which results in the correction of the image dislocation. Finally, the image distortion and dislocation are corrected by adjusting the sampling start time and time interval of the data acquisition.The confocal endomicroscopic imaging system based on reciprocating progressive scanning is established to verify the effects of correction of image distortion and dislocation. Experimental results show that this method can effectively correct image distortion and dislocation, and further improve the lateral resolution of images.Compared with existing methods, the local resolution of the image corrected by the method in this paper is improved from 10 pixel to 6 pixel.
参考文献

[1] KIM B, KIM Y H, PARK S J, et al.. Probe-based confocal laser endomicroscopy for evaluating the submucosal invasion of colorectal neoplasms [J]. Surgical Endoscopy, 2017, 31(2): 594-601.

[2] 左秀丽, 李长青, 李延青. 消化道共聚焦显微内镜诊断[M]. 北京: 人民卫生出版社, 2014.

    ZUO X L, LI CH Q, LI Y Q. Gastrointestinal Endomicroscopy[M]. Beijing: People's Medical Publishing House, 2014. (in Chinese)

[3] WANG J F, YANG M, YANG L, et al.. A confocal endoscope for cellular imaging[J]. Engineering, 2015, 1(3): 351-360.

[4] 赵维谦, 任利利, 盛忠, 等. 激光共焦显微光束的偏转扫描[J]. 光学 精密工程, 2016, 24(6): 1257-1263.

    ZHAO W Q, REN L L, SHENG ZH, et al.. Beam deflection scanning for laser confocal microscopy[J]. Opt. Precision Eng., 2016, 24(6): 1257-1263.(in Chinese)

[5] 魏通达. 共聚焦激光扫描光学显微成像关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2014.

    WEI T D. Key Technologies Research in Confocal Laser Scanning Microscopy [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, University of Chinese Academy of Sciences, 2014. (in Chinese)

[6] WU X D, TORO L, STEFANI E, et al.. Ultrafast photon counting applied to resonant scanning STED microscopy[J]. Journal of Microscopy, 2015, 257(1): 31-38.

[7] SANDERSON M J, PARKER I. Video-rate confocal microscopy[J]. Methods in Enzymology, 2003, 360: 447-481.

[8] 熊大曦, 刘云, 梁永, 等. 共振扫描显微成像中的图像畸变校正[J].光学 精密工程, 2015, 23(10): 2971-2979.

    XIONG D X, LIU Y, LIANG Y, et al.. Correction of distortion in microscopic imaging with resonant scanning[J]. Opt. Precision Eng., 2015, 23(10): 2971-2979. (in Chinese)

[9] 刘创, 张运海, 黄维, 等. 皮肤反射式共聚焦显微成像扫描畸变校正[J].红外与激光工程, 2018, 47(10): 154-159.

    LIU CH, ZHANG Y H, HUANG W, et al.. Correction of reflectance confocal microscopy for skin imaging distortion due to scan [J]. Infrared and Laser Engineering, 2018, 47(10): 154-159. (in Chinese)

[10] 秦小云, 苏丹, 贾新月, 等. 自适应激光共焦高速扫描显微成像错位校正算法[J].光学学报, 2019, 39(1): 417-426.

    QIN X Y, SU D, JIA X Y, et al.. Adaptive laser confocal high-speed scanning microscopy imaging dislocation correction algorithm [J] Acta Optica Sinica, 2019, 39(1): 417-426. (in Chinese)

[11] YOO H W, ROYEN M E V, CAPPELLEN W A V, et al.. Adaptive optics for confocal laser scanning microscopy with adjustable pinhole [J]. SPIE,2016,9887:988739-1-11.

[12] 张运海, 杨皓旻, 孔晨晖. 激光扫描共聚焦光谱成像系统[J]. 光学 精密工程, 2014, 22(6): 1446-1453.

    ZHANG Y H, YANG H M, KONG CH H. Spectral imaging system on laser scanning confocal microscopy [J]. Opt. Precision Eng., 2014, 22(6): 1446-1453. (in Chinese)

[13] CSENCSICS E, SCHITTER G. System design and control of a resonant fast steering mirror for lissajous-based scanning[J]. ASME Transactions on Mechatronics, 2017, 22(5): 1963-1972.

[14] 段黎明, 杨尚朋, 张霞, 等. 基于遗传算法的三角网格折叠简化[J]. 光学 精密工程, 2018, 26(6): 1489-1496.

    DUAN L M, YANG SH P, ZHANG X, et al.. Collapsing simplification of triangular mesh based on genetic algorithm [J]. Opt. Precision Eng., 2018, 26(6): 1489-1496. (in Chinese)

[15] 陈丽芳, 刘渊, 须文波. 改进的归一互相关法的灰度图像模板匹配方法[J]. 计算机工程与应用, 2011, 47(26): 181-183.

    CHEN L F, LIU Y, XU W B. Improved normalized correlation method of gray image template matching method[J]. Computer Engineering and Applications, 2011, 47(26): 181-183.(in Chinese)

[16] SONG Y Y, WANG F L, CHEN X X. An improved genetic algorithm for numerical function optimization[J]. Applied Intelligence, 2019, 49(5): 1880-1902.

徐宝腾, 杨西斌, 刘家林, 周伟, 田浩然, 熊大曦. 高速扫描激光共聚焦显微内窥镜图像校正[J]. 光学 精密工程, 2020, 28(1): 60. XU Bao-teng, YANG Xi-bin, LIU Jia-lin, ZHOU Wei, TIAN Hao-ran, XIONG Da-xi. Image correction for high speed scanning confocal laser endomicroscopy[J]. Optics and Precision Engineering, 2020, 28(1): 60.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!