中国激光, 2019, 46 (5): 0508001, 网络出版: 2019-11-11   

超快光电子显微技术在纳米光子学中的应用 下载: 2163次

Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics
作者单位
1 北海道大学电子科学研究所, 日本 札幌 001-0020
3 北京大学物理学院, 北京 100871
引用该论文

孙泉, 祖帅, 上野贡生, 龚旗煌, 三泽弘明. 超快光电子显微技术在纳米光子学中的应用[J]. 中国激光, 2019, 46(5): 0508001.

Quan Sun, Shuai Zu, Kosei Ueno, Qihuang Gong, Hiroaki Misawa. Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics[J]. Chinese Journal of Lasers, 2019, 46(5): 0508001.

参考文献

[1] 郭方准. 解说低能量/光电子显微镜(LEEM/PEEM)[J]. 物理, 2010, 39(3): 211-218.

    Guo F Z. Low energy/photoemission electron microscopy[J]. Physics, 2010, 39(3): 211-218.

[2] 杨京寰, 杨宏, 龚旗煌. 超快时间分辨光电子显微镜技术及应用[J]. 物理, 2017, 46(12): 785-793.

    Yang J H, Yang H, Gong Q H. Ultrafast time-resolved photoemission electron microscopy and its applications[J]. Physics, 2017, 46(12): 785-793.

[3] BAUERE.Surface microscopy with low energy electrons[M]. New York: Springer, 2014.

[4] Man M K L, Margiolakis A, Deckoff-Jones S, et al. . Imaging the motion of electrons across semiconductor heterojunctions[J]. Nature Nanotechnology, 2017, 12(1): 36-40.

[5] Locatelli A, Aballe L, Mentes T O, et al. Photoemission electron microscopy with chemical sensitivity: SPELEEM methods and applications[J]. Surface and Interface Analysis, 2006, 38(12/13): 1554-1557.

[6] Sun Q, Ueno K, Yu H, et al. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy[J]. Light: Science & Applications, 2013, 2(12): e118.

[7] Brüche E. Elektronenmikroskopische abbildung mit lichtelektrischen elektronen[J]. Zeitschrift für Physik, 1933, 86(7/8): 448-450.

[8] Engel W, Kordesch M E, Rotermund H H, et al. A UHV-compatible photoelectron emission microscope for applications in surface science[J]. Ultramicroscopy, 1991, 36(1/2/3): 148-153.

[9] Menteş T O, Locatelli A. Angle-resolved X-ray photoemission electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(10): 323-329.

[10] Fischer U C, Pohl D W. Observation of single-particle plasmons by near-field optical microscopy[J]. Physical Review Letters, 1989, 62(4): 458-461.

[11] Fang Z Y, Peng Q, Song W T, et al. Plasmonic focusing in symmetry broken nanocorrals[J]. Nano Letters, 2011, 11(2): 893-897.

[12] Zu S, Han T Y, Jiang M L, et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures[J]. ACS Nano, 2018, 12(4): 3908-3916.

[13] Kuttge M. Vesseur E J R, Koenderink A F, et al. Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence[J]. Physical Review B, 2009, 79(11): 113405.

[14] Koh A L, Bao K, Khan I, et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes[J]. ACS Nano, 2009, 3(10): 3015-3022.

[15] Nicoletti O, de la Peña F, Leary R K, et al. . Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles[J]. Nature, 2013, 502(7469): 80-84.

[16] Sun Q, Yu H, Ueno K, et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy[J]. ACS Nano, 2016, 10(3): 3835-3842.

[17] Schertz F, Schmelzeisen M, Mohammadi R, et al. Near field of strongly coupled plasmons: uncovering dark modes[J]. Nano Letters, 2012, 12(4): 1885-1890.

[18] Yang J H, Sun Q, Yu H, et al. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187-193.

[19] Yu H, Sun Q, Ueno K, et al. Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy[J]. ACS Nano, 2016, 10(11): 10373-10381.

[20] Yu H, Sun Q, Yang J H, et al. Near-field spectral properties of coupled plasmonic nanoparticle arrays[J]. Optics Express, 2017, 25(6): 6883-6894.

[21] Song H F, Sun Q, Li J, et al. Exotic mode suppression in plasmonic heterotrimer system[J]. The Journal of Physical Chemistry C, 2019, 123(2): 1398-1405.

[22] Yang J H, Sun Q, Ueno K, et al. Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes[J]. Nature Communications, 2018, 9: 4858.

[23] Kubo A, Onda K, Petek H, et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film[J]. Nano Letters, 2005, 5(6): 1123-1127.

[24] Shi X, Ueno K, Oshikiri T, et al. Enhanced water splitting under modal strong coupling conditions[J]. Nature Nanotechnology, 2018, 13(10): 953-958.

[25] 崔健, 季博宇, 林景全. 激发等离激元Fano共振的金属类圆盘纳米结构体系[J]. 激光与光电子学进展, 2018, 55(6): 060002.

    Cui J, Ji B Y, Lin J Q. Plasmonic fano resonance in metallic disk-like nanostructure system[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002.

[26] 单杭永, 祖帅, 方哲宇. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002.

    Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.

[27] Ji B Y, Qin J, Tao H Y, et al. Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures[J]. New Journal of Physics, 2016, 18(9): 093046.

[28] Ji B Y, Wang Q, Song X W, et al. Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy[J]. Journal of Physics D: Applied Physics, 2017, 50(41): 415309.

孙泉, 祖帅, 上野贡生, 龚旗煌, 三泽弘明. 超快光电子显微技术在纳米光子学中的应用[J]. 中国激光, 2019, 46(5): 0508001. Quan Sun, Shuai Zu, Kosei Ueno, Qihuang Gong, Hiroaki Misawa. Applications of Ultrafast Photoemission Electron Microscopy in Nanophotonics[J]. Chinese Journal of Lasers, 2019, 46(5): 0508001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!