强激光与粒子束, 2014, 26 (3): 034001, 网络出版: 2014-03-31   

不同厚度像素CdZnTe探测器的性能测试和评估

Experiment and simulation of performance characteristics for pixellated CdZnTe detectors with various thickness
作者单位
1 重庆大学 光电技术及系统教育部重点实验室, 重庆 400030
2 重庆工商职业学院, 重庆 合川 401520
3 中国工程物理研究院 电子工程研究所, 四川 绵阳 621900
摘要
碲锌镉材料(CdZnTe)是目前探测X射线和γ射线的最好材料之一。将241Am和137Cs辐射源作用于像素CdZnTe探测器,通过实验和仿真分别得到能量谱估计、能量分辨率和峰值效率。由实验和仿真结果得出:在662 keV的高能量下,厚度较大的CdZnTe探测器可获得更高的能量分辨率和峰值效率,但在59.5 keV低能处会出现拖尾升高和电荷损失的现象;厚度较薄的探测器在低能处的特性反而更好。
Abstract
Cadmium zinc telluride (CZT) is one of the preferred materials for the fabrication of X-ray and gamma-ray detector. The purpose of this work was to evaluate limitations of pixellated CdZnTe detector’s thickness used under different photon energy and find the best possible compromise for different detector thicknesses. Simulations and experimental investigations of the energy spectrum, energy resolution and photopeak efficiency measured by pixellated CdZnTe detectors have been performed using 241Am and 137Cs irradiation sources. It is concluded that thick CdZnTe provides high energy resolution and photopeak efficiency for high energy of 662 keV, but it suffers from increased tailing and charge loss for low energy of 59.5 keV; while thin devices can provide better performance.
参考文献

[1] Li Guoqiang, Zhang Xiaolu, Hua Hui, et al. Modified vertical bridgman method for growth of high-quality Cd1-xZnxTe crystals[J].J Electron Mater, 2005, 34(9): 1215-1217.

[2] Zha M, Zappettini A, Calestani D, et al. Full encapsulated CdZnTe crystals by the vertical Bridgman method[J]. Cryst Growth, 2008, 310 (7/9): 2072-2074.

[3] Washington A L, Teague L C, Duff M C, et al. Atmospheric effects on the performance of CdZnTe single-crystal detectors[J].Electron Mater, 2010,39(7): 1104-1105.

[4] Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Phys Stat Sol B, 2004, 241(3): 783-785.

[5] Sordo S D, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 2009,9: 3506-3507.

[6] Bolotnikov A E, Camarda G C, Carini G A, et al. Performance characteristics of Frisch-ring CdZnTe detectors[J]. IEEE Trans Nucl Sci, 2006,53(2): 607-608.

[7] Prettymana T H, Ianakieva K D, Soldnerb S A, et al. Effect of differential bias on the transport of electrons in coplanar grid CdZnTe detectors[J]. Nucl Instrum Meth A, 2002,476: 658-660.

[8] Montémont G, Gentet M-C, Monnet O, et al. Simulation and design of orthogonal capacitive strip CdZnTe detectors[J]. IEEE Trans Nucl Sci, 2006,54: 855-856.

[9] Guerra P, Santos A, Darambara D G,et al. An investigation of performance characteristics of a pixellated room-temperature semiconductor detector for medical imaging[J]. Phys D: Appl Phys, 2009,42: 175101.

[10] Wangerin K, Du Y, Jansen F. CZT performance for different anode pixel geometries and data corrections[J]. Nucl Instrum Meth A, 2011, 648: 37-41.

[11] Aillon E G, Tabary J, Gliere A, et al. Charge sharing on monolithic CdZnTe gamma-ray detectors: A simulation study[J].Nucl Instrum Meth A, 2006, 563: 124-127.

[12] Kim J C, Anderson S E, Kaye W, et al. Charge sharing in common-grid pixelated CdZnTe detectors[J]. Nucl Instrum Meth A, 2011,654: 233-239.

[13] Benoit M, Hamel L A. Simulation of charge collection processes in semiconductor CdZnTe γ-ray detectors[J]. Nucl Instrum Meth A, 2009,606: 510-513.

[14] Kozorezov A G, Wigmorea J K. Analytic model for the spatial and spectral resolution of pixellated semiconducting detectors of high-energy photons[J]. Appl Phys, 2005,97: 074502.

[15] Hossain A, Bolotnikov A E, Camarda G S,et al. Defects in cadmium zinc telluride crystals revealed by etch-pit distributions[J]. Cryst Growth, 2008,310 (21): 4493-4495.

[16] Bolotnikov A E, Camarda G S, Carini G A, et al. Performance-limiting defects in CdZnTe detectors[J]. IEEE Trans Nucl Sci. 2007,54(4): 821-824.

[17] 黎淼,肖沙里,张流强,等. 基于CdZnTe像素阵列探测技术的伽玛源成像[J].强激光与粒子束,2010,22(9): 2165-2167.(Li Miao, Xiao Shali, Zhang Liuqiang, et al. Gamma source imaging based on pixellated CdZnTe detection. High Power Laser and Particle Beams, 2010, 22(9): 2165-2167)

[18] 王玺,肖沙里,张流强,等.高能伽玛源下碲锌镉探测器的针孔成像[J].强激光与粒子束,2010,22(10): 2448-2450.(Wang Xi, Xiao Shali, Zhang Liuqiang, et al. Pinhole imaging using CdZnTe detector for high-energy gamma source. High Power Laser and Particle Beams,2010,22(10): 2448-2450)

[19] 王玺,肖沙里,黎淼,等.高剂量X射线辐照下碲锌镉探测器的深度极化效应[J].强激光与粒子束,2013,25(3): 773-775.(Wang Xi, Xiao Shali, Li Miao, et al. Further polarization effect of CdZnTe detectors under high flux X-ray irradiation. High Power Laser and Particle Beams, 2013, 25(3): 773-775)

[20] Wang Tao, Jie Wanqi, Xu Yadong, et al. Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques[J]. Transactions of Nonferrous Metal Society of China, 2009,19 (3): 622-623.

[21] Bolotnikova A E, Hubert Chena C M, Cooka W R, et al. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors[J]. Nucl Instrum Meth A, 2003, 510 (3): 302-304.

[22] He Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors[J]. Nucl Instrum Meth A, 2001, 436 (1/2): 253-256.

沈敏, 肖沙里, 张流强, 曹玉琳, 陈宇晓. 不同厚度像素CdZnTe探测器的性能测试和评估[J]. 强激光与粒子束, 2014, 26(3): 034001. Shen Min, Xiao Shali, Zhang Liuqiang, Cao Yulin, Chen Yuxiao. Experiment and simulation of performance characteristics for pixellated CdZnTe detectors with various thickness[J]. High Power Laser and Particle Beams, 2014, 26(3): 034001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!