液晶与显示, 2020, 35 (7): 675, 网络出版: 2020-10-27   

铁电液晶光电模式及其应用

Electro-optic modes of ferroelectric liquid crystals and their applications
作者单位
1 北京航空航天大学 仪器科学与光电工程学院, 北京 100191
2 香港科技大学 先进显示与光电子技术国家重点实验室,香港 999077
摘要
铁电液晶因具有低电压驱动下的微秒级响应, 近年来得到科研工作者的广泛关注, 且有望应用于下一代显示及光子学器件领域。本文介绍3种典型铁电液晶光电模式, 分别为表面稳定型(surface stabilized ferroelectric liquid crystal, SSFLC)、螺旋形变型(deformed helix ferroelectric, DHF)及电致解旋型(electrically suppressed helix, ESH)。对各光电模式的工作原理及对应的电光效应进行详细阐述, 如双稳及多稳态响应、连续灰阶调制、高对比度开关等。同时, 光控取向技术在铁电液晶器件中发挥着至关重要的作用。相较于传统摩擦取向层, 光控偶氮染料取向层可实现非接触的、锚定能有效控制的铁电液晶取向, 这为铁电液晶器件的无缺陷、大面积均匀取向提供前期基础。因此, 高对比度、高分辨率、快响应的铁电液晶器件在未来的场序彩色显示、微型显示、2D/3D显示等领域有着广阔应用前景。
Abstract
The ferroelectric liquid crystal (FLC) which has the advantage of a fast response under a low electric field has become one of the most promising candidates of the next generation liquid crystal display (LCD) as well as photonic devices. Three electrooptic modes including surface stabilized FLC (SSFLC), deformed helix ferroelectric (DHF) mode, and electrically suppressed helix (ESH) mode are reviewed with the corresponding electrooptic effects like bi-and multi-stable switching, continuous modulation of grayscale or phase, and high contrast switching. Moreover, the photo-aligning technique is in high demand compared with the traditional rubbing method for FLC devices, since photo-aligning is a non-contact process, which avoids static charges, particles, and contacting damages. With the advantages of controllable anchoring energy, the photoalignment provides FLC samples with uniform alignment and high contrast ratio. The fast FLCs with a high resolution and high contrast can be applied in the next generation display including field sequential color FLC micro-displays as well as switchable 2D/3D televisions.
参考文献

[1] TAN G J, LEE Y H, ZHAN T, et al. Foveated imaging for near-eye displays [J]. Optics Express, 2018, 26(19): 25076-25085.

    TAN G J, LEE Y H, ZHAN T, et al. Foveated imaging for near-eye displays [J]. Optics Express, 2018, 26(19): 25076-25085.

[2] SONG D H, KIM J W, KIM K H, et al. Ultrafast switching of randomly-aligned nematic liquid crystals [J]. Optics Express, 2012, 20(11): 11659-11664.

    SONG D H, KIM J W, KIM K H, et al. Ultrafast switching of randomly-aligned nematic liquid crystals [J]. Optics Express, 2012, 20(11): 11659-11664.

[3] TAKAHASHI T, FURUE H, SHIKADA M, et al. Preliminary study of field sequential fullcolor liquid crystal display using polymer stabilized ferroelectric liquid crystal display [J]. Japanese Journal of Applied Physics, 1999, 38(5A): L534-L536.

    TAKAHASHI T, FURUE H, SHIKADA M, et al. Preliminary study of field sequential fullcolor liquid crystal display using polymer stabilized ferroelectric liquid crystal display [J]. Japanese Journal of Applied Physics, 1999, 38(5A): L534-L536.

[4] CASTLES F, MORRIS S M, GARDINER D J, et al. Ultra-fast-switching flexoelectric liquid-crystal display with high contrast [J]. Journal of the Society for Information Display, 2010, 18(2): 128-133.

    CASTLES F, MORRIS S M, GARDINER D J, et al. Ultra-fast-switching flexoelectric liquid-crystal display with high contrast [J]. Journal of the Society for Information Display, 2010, 18(2): 128-133.

[5] HOFMANN U, JANES J, QUENZER H J. High-Q MEMS resonators for laser beam scanning displays [J]. Micromachines, 2012, 3(2): 509-528.

    HOFMANN U, JANES J, QUENZER H J. High-Q MEMS resonators for laser beam scanning displays [J]. Micromachines, 2012, 3(2): 509-528.

[6] WU T Z, SHER C W, LIN Y, et al. Mini-LED and Micro-LED: promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557.

    WU T Z, SHER C W, LIN Y, et al. Mini-LED and Micro-LED: promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557.

[7] CHEN H S, LIN Y H, SRIVASTAVA A K, et al. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element [J]. Optics Express, 2014, 22(11): 13138-13145.

    CHEN H S, LIN Y H, SRIVASTAVA A K, et al. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element [J]. Optics Express, 2014, 22(11): 13138-13145.

[8] KOTOVA S P, PATLAN V V, SAMAGIN S A. Tunable liquid-crystal focusing device. 2. Experiment [J]. Quantum Electronics, 2011, 41(1): 65-70.

    KOTOVA S P, PATLAN V V, SAMAGIN S A. Tunable liquid-crystal focusing device. 2. Experiment [J]. Quantum Electronics, 2011, 41(1): 65-70.

[9] WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light: Science & Applications, 2015, 4(2): e253.

    WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light: Science & Applications, 2015, 4(2): e253.

[10] HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Advanced Materials, 2005, 17(1): 96-98.

    HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Advanced Materials, 2005, 17(1): 96-98.

[11] REN H W, LIN Y H, FAN Y H, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal [J]. Applied Physics Letters, 2005, 86(14): 141110.

    REN H W, LIN Y H, FAN Y H, et al. Polarization-independent phase modulation using a polymer-dispersed liquid crystal [J]. Applied Physics Letters, 2005, 86(14): 141110.

[12] ZHU J L, NI S B, SONG Y, et al. Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent [J]. Applied Physics Letters, 2013, 102(7): 071104.

    ZHU J L, NI S B, SONG Y, et al. Improved Kerr constant and response time of polymer-stabilized blue phase liquid crystal with a reactive diluent [J]. Applied Physics Letters, 2013, 102(7): 071104.

[13] CHIGRINOV V G, BAIKALOV V A, POZHIDAEV E P, et al. Flexoelectric polarization of ferroelectric smectic liquid crystal [J]. Soviet Physics-JETP, 1985, 88: 2015-2024.

    CHIGRINOV V G, BAIKALOV V A, POZHIDAEV E P, et al. Flexoelectric polarization of ferroelectric smectic liquid crystal [J]. Soviet Physics-JETP, 1985, 88: 2015-2024.

[14] KIM S H, SHI L, CHIEN L C. Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network [J]. Journal of Physics D: Applied Physics, 2009, 42(19): 195102.

    KIM S H, SHI L, CHIEN L C. Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network [J]. Journal of Physics D: Applied Physics, 2009, 42(19): 195102.

[15] CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Applied Physics Letters, 1980, 36(11): 899-901.

    CLARK N A, LAGERWALL S T. Submicrosecond bistable electro-optic switching in liquid crystals [J]. Applied Physics Letters, 1980, 36(11): 899-901.

[16] LAGERWALL S T. Ferroelectric and antiferroelectric liquid crystals [J]. Ferroelectrics, 2004, 301(1): 15-45.

    LAGERWALL S T. Ferroelectric and antiferroelectric liquid crystals [J]. Ferroelectrics, 2004, 301(1): 15-45.

[17] CHIGRINOV V G. Liquid Crystal Devices: Physics and Applications [M]. Boston: Artech-House, 1999.

    CHIGRINOV V G. Liquid Crystal Devices: Physics and Applications [M]. Boston: Artech-House, 1999.

[18] CHIGRINOV V G, KOZENKOV V M, KWOK H S. Photoalignment of Liquid Crystalline Materials: Physics and Applications [M]. Hoboken, NJ: John Wiley & Sons, Ltd., 2008.

    CHIGRINOV V G, KOZENKOV V M, KWOK H S. Photoalignment of Liquid Crystalline Materials: Physics and Applications [M]. Hoboken, NJ: John Wiley & Sons, Ltd., 2008.

[19] POZHIDAEV E, CHIGRINOV V, HUANG D D, et al. Photoalignment of ferroelectric liquid crystals by azodye layers [J]. Japanese Journal of Applied Physics, 2004, 43(8A): 5440-5446.

    POZHIDAEV E, CHIGRINOV V, HUANG D D, et al. Photoalignment of ferroelectric liquid crystals by azodye layers [J]. Japanese Journal of Applied Physics, 2004, 43(8A): 5440-5446.

[20] GUO Q, SRIVASTAVA A K, POZHIDAEV E P, et al. Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy [J]. Applied Physics Express, 2014, 7(2): 021701.

    GUO Q, SRIVASTAVA A K, POZHIDAEV E P, et al. Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy [J]. Applied Physics Express, 2014, 7(2): 021701.

[21] PANARIN Y, POZHIDAEV E, CHIGRINOV V. Dynamics of controlled birefringence in an electric field deformed helical structure of a ferroelectric liquid crystal [J]. Ferroelectrics, 1991, 114(1): 181-186.

    PANARIN Y, POZHIDAEV E, CHIGRINOV V. Dynamics of controlled birefringence in an electric field deformed helical structure of a ferroelectric liquid crystal [J]. Ferroelectrics, 1991, 114(1): 181-186.

[22] POZHIDAEV E P. Electro-optical properties of deformed-helix ferroelectric liquid crystal display cells [C]//Proceedings of SPIE 4511, Advanced Display Technologies: Basic Studies of Problems in Information Display. Moscow, Russian Federation: SPIE, 2001: 92-99.

    POZHIDAEV E P. Electro-optical properties of deformed-helix ferroelectric liquid crystal display cells [C]//Proceedings of SPIE 4511, Advanced Display Technologies: Basic Studies of Problems in Information Display. Moscow, Russian Federation: SPIE, 2001: 92-99.

[23] BERESNEV L A, CHIGRINOV V G, DERGACHEV D I, et al. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystal [J]. Liquid Crystals, 1989, 5(4): 1171-1177.

    BERESNEV L A, CHIGRINOV V G, DERGACHEV D I, et al. Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystal [J]. Liquid Crystals, 1989, 5(4): 1171-1177.

[24] PRESNYAKOV V, LIU Z J, CHIGRINOV V G. Fast optical retarder using deformed-helical ferroelectric liquid crystals [C]//Proceedings of SPIE 5970, Photonic Applications in Devices and Communication Systems. Toronto, Canada: SPIE, 2005: 426-435.

    PRESNYAKOV V, LIU Z J, CHIGRINOV V G. Fast optical retarder using deformed-helical ferroelectric liquid crystals [C]//Proceedings of SPIE 5970, Photonic Applications in Devices and Communication Systems. Toronto, Canada: SPIE, 2005: 426-435.

[25] GUO Q, BRODZELI Z, POZHIDAEV E P, et al. Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells [J]. Optics Letters, 2012, 37(12): 2343-2345.

    GUO Q, BRODZELI Z, POZHIDAEV E P, et al. Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells [J]. Optics Letters, 2012, 37(12): 2343-2345.

[26] POZHIDAEV E, CHIGRINOV V. Fast photo-aligned V-shape ferroelectric LCD based on DHF mode [J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 387-390.

    POZHIDAEV E, CHIGRINOV V. Fast photo-aligned V-shape ferroelectric LCD based on DHF mode [J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 387-390.

[27] HEGDE G, XU P Z, POZHIDAEV E, et al. Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals [J]. Liquid Crystals, 2008, 35(9): 1137-1144.

    HEGDE G, XU P Z, POZHIDAEV E, et al. Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals [J]. Liquid Crystals, 2008, 35(9): 1137-1144.

[28] CHIGRINOV V G, KWOK H S. Photoalignment of liquid crystals: applications to fast response ferroelectric liquid crystals and rewritable photonic devices [M]//KWOK H S, NAEMURA S, ONG H L. Progress in Liquid Crystal Science and Technology: in Honor of Shunsuke Kobayashi’s 80th Birthday. Singapore: World Scientific, 2013.

    CHIGRINOV V G, KWOK H S. Photoalignment of liquid crystals: applications to fast response ferroelectric liquid crystals and rewritable photonic devices [M]//KWOK H S, NAEMURA S, ONG H L. Progress in Liquid Crystal Science and Technology: in Honor of Shunsuke Kobayashi’s 80th Birthday. Singapore: World Scientific, 2013.

[29] POZHIDAEV E, MINCHENKO M, MOLKIN V, et al. High frequency low voltage shock free ferroelectric liquid crystal: a new electro-optical mode with electrically suppressed helix [C]//Proceedings of the 31st International Display Research Conference 2011. Arcachon, France: SID, 2011.

    POZHIDAEV E, MINCHENKO M, MOLKIN V, et al. High frequency low voltage shock free ferroelectric liquid crystal: a new electro-optical mode with electrically suppressed helix [C]//Proceedings of the 31st International Display Research Conference 2011. Arcachon, France: SID, 2011.

[30] POZHIDAEV E, CHIGRINOV V, HEGDE G, et al. Multistable electro-optical modes in ferroelectric liquid crystals [J]. Journal of the Society for Information Display, 2009, 17(1): 53-59.

    POZHIDAEV E, CHIGRINOV V, HEGDE G, et al. Multistable electro-optical modes in ferroelectric liquid crystals [J]. Journal of the Society for Information Display, 2009, 17(1): 53-59.

[31] POZHIDAEV E P, CHIGRINOV V G. Bistable and multistable states in ferroelectric liquid crystals [J]. Crystallography Reports, 2006, 51(6): 1030-1040.

    POZHIDAEV E P, CHIGRINOV V G. Bistable and multistable states in ferroelectric liquid crystals [J]. Crystallography Reports, 2006, 51(6): 1030-1040.

[32] GUO Q, ZHAO X J, ZHAO H J, et al. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage [J]. Optics Letters, 2015, 40(10): 2413-2416.

    GUO Q, ZHAO X J, ZHAO H J, et al. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage [J]. Optics Letters, 2015, 40(10): 2413-2416.

[33] CHIGRINOV V G, KWOK H S, YAKOVLEV D, et al. LCD optimization and modeling [J]. Journal of the Society for Information Display, 2004, 12(2): 183-187.

    CHIGRINOV V G, KWOK H S, YAKOVLEV D, et al. LCD optimization and modeling [J]. Journal of the Society for Information Display, 2004, 12(2): 183-187.

[34] KISELEV A D, POZHIDAEV E P, CHIGRINOV V G, et al. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch [J]. Physical Review E, 2011, 83(3): 31703.

    KISELEV A D, POZHIDAEV E P, CHIGRINOV V G, et al. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch [J]. Physical Review E, 2011, 83(3): 31703.

[35] CHIGRINOV V G, POZHIDAEV E, SRIVASTAVA A K, et al. Novel photoaligned fast ferroelectric liquid crystal display [C]//Proceedings of the 18th International Display Workshops. Nagoya, Japan: Society for Information Display, 2011.

    CHIGRINOV V G, POZHIDAEV E, SRIVASTAVA A K, et al. Novel photoaligned fast ferroelectric liquid crystal display [C]//Proceedings of the 18th International Display Workshops. Nagoya, Japan: Society for Information Display, 2011.

[36] GUO Q, XU L, SUN J T, et al. Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating [J]. Liquid Crystal, 2019, 46(9): 1383-1388.

    GUO Q, XU L, SUN J T, et al. Fast switching beam steering based on ferroelectric liquid crystal phase shutter and polarisation grating [J]. Liquid Crystal, 2019, 46(9): 1383-1388.

[37] SRIVASTAVA A K, DE BOUGRENET DE LA TOCNAYE J L, DUPONT L. Liquid crystal active glasses for 3D cinema [J]. Journal of Display Technology, 2010, 6(10): 522-530.

    SRIVASTAVA A K, DE BOUGRENET DE LA TOCNAYE J L, DUPONT L. Liquid crystal active glasses for 3D cinema [J]. Journal of Display Technology, 2010, 6(10): 522-530.

[38] SRIVASTAVA A K, POZHIDAEV E P, CHIGRINOV V G, et al. Single walled carbon nano-tube, ferroelectric liquid crystal composites: excellent diffractive tool [J]. Applied Physics Letters, 2011, 99(20): 201106.

    SRIVASTAVA A K, POZHIDAEV E P, CHIGRINOV V G, et al. Single walled carbon nano-tube, ferroelectric liquid crystal composites: excellent diffractive tool [J]. Applied Physics Letters, 2011, 99(20): 201106.

[39] SRIVASTAVA A K, CHIGRINOV V G, KWOK H S. Ferroelectric liquid crystal gratings [C]//Liquid Crystals Photonic Workshop. Hong Kong: Hong Kong University of Science and Technology, 2012.

    SRIVASTAVA A K, CHIGRINOV V G, KWOK H S. Ferroelectric liquid crystal gratings [C]//Liquid Crystals Photonic Workshop. Hong Kong: Hong Kong University of Science and Technology, 2012.

[40] WOLTMAN S J, EAKIN J N, CRAWFORD G P, et al. Electro-optical investigations of holographic-polymer-dispersed ferroelectric liquid crystals [J]. Journal of the Optical Society of America A, 2007, 24(12): 3789-3799.

    WOLTMAN S J, EAKIN J N, CRAWFORD G P, et al. Electro-optical investigations of holographic-polymer-dispersed ferroelectric liquid crystals [J]. Journal of the Optical Society of America A, 2007, 24(12): 3789-3799.

[41] SRIVASTAVA A K, HU W, CHIGRINOV V G, et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals [J]. Applied Physics Letters, 2012, 101(3): 031112.

    SRIVASTAVA A K, HU W, CHIGRINOV V G, et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals [J]. Applied Physics Letters, 2012, 101(3): 031112.

[42] MA Y, SUN J, SRIVASTAVA A K, et al. Optically rewritable ferroelectric liquid-crystal grating [J]. EPL (Europhysics Letters), 2013, 102(2): 24005.

    MA Y, SUN J, SRIVASTAVA A K, et al. Optically rewritable ferroelectric liquid-crystal grating [J]. EPL (Europhysics Letters), 2013, 102(2): 24005.

[43] HU W, SRIVASTAVA A, XU F, et al. Liquid crystal gratings based on alternate TN and PA photoalignment [J]. Optics Express, 2012, 20(5): 5384-5391.

    HU W, SRIVASTAVA A, XU F, et al. Liquid crystal gratings based on alternate TN and PA photoalignment [J]. Optics Express, 2012, 20(5): 5384-5391.

[44] BERESNEV L A, LOSEVA M V, CHERNOVA N I, et al. Ferroelectric domains in liquid crystal [J]. Journal of Experimental and Theoretical Physics Letters, 1990, 51: 516-521.

    BERESNEV L A, LOSEVA M V, CHERNOVA N I, et al. Ferroelectric domains in liquid crystal [J]. Journal of Experimental and Theoretical Physics Letters, 1990, 51: 516-521.

[45] POZHIDAEV E P, KISELEV A D, SRIVASTAVA A K, et al. Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch [J]. Physical Review E, 2013, 87(5): 052502.

    POZHIDAEV E P, KISELEV A D, SRIVASTAVA A K, et al. Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch [J]. Physical Review E, 2013, 87(5): 052502.

[46] WANG X Q, SRIVASTAVA A K, CHIGRINOV V G, et al. Switchable Fresnel lens based on micropatterned alignment [J]. Optics Letters, 2013, 38(11): 1775-1777.

    WANG X Q, SRIVASTAVA A K, CHIGRINOV V G, et al. Switchable Fresnel lens based on micropatterned alignment [J]. Optics Letters, 2013, 38(11): 1775-1777.

[47] SRIVASTAVA A K, WANG X Q, CHIGRINOV V G, et al. Switchable liquid crystal Fresnel lens: US, 9933685 [P]. 2018-04-03.

    SRIVASTAVA A K, WANG X Q, CHIGRINOV V G, et al. Switchable liquid crystal Fresnel lens: US, 9933685 [P]. 2018-04-03.

[48] SHTEYNER E A, SRIVASTAVA A K, CHIGRINOV V G, et al. Submicron-scale liquid crystal photo-alignment [J]. Soft Matter, 2013, 9(21): 5160-5165.

    SHTEYNER E A, SRIVASTAVA A K, CHIGRINOV V G, et al. Submicron-scale liquid crystal photo-alignment [J]. Soft Matter, 2013, 9(21): 5160-5165.

郭琦, 杜芸梦, 赵慧洁, CHIGRINOV V G, 郭海成. 铁电液晶光电模式及其应用[J]. 液晶与显示, 2020, 35(7): 675. GUO Qi, DU Yun-meng, ZHAO Hui-jie, CHIGRINOV V G, KWOK Hoi-sing. Electro-optic modes of ferroelectric liquid crystals and their applications[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 675.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!