中国激光, 2013, 40 (1): 0115003, 网络出版: 2012-12-21   

基于LabVIEW的气体高分辨率光谱探测系统

A High Sensitive Spectral Detection System of Gaseous Measurement Based on LabVIEW
作者单位
浙江师范大学信息光学研究所, 浙江 金华 321004
摘要
搭建了一套基于LabVIEW的实时、在线气体高分辨率光谱探测系统,采用离轴入射腔增强吸收光谱技术,将外腔式二极管激光器(ECDL)作为激光光源,实现了粗细两种扫描方式的光谱测量,获得了CO2分子在6358.65 cm-1处的弱吸收谱峰、吸收光谱强度、线宽与气体浓度的关系,采用该吸收峰使整个系统的最小探测灵敏度达1.1×10-6 cm-1。在波数为6450~6530 cm-1范围内,所获得的CO2分子振动转动光谱与模拟结果基本一致。实验结果表明该系统不仅可行,而且具有较高的探测灵敏度和光谱精度,能满足气体不同光谱的探测需求。
Abstract
A real-time, on-line gaseous detection system with high-resolution spectrum is built based on LabVIEW. It employs off-axis cavity enhanced absorption spectroscopy technology, and uses an external cavity diode laser (ECDL) as a laser light source. Two kinds of scan mode, one in roughness, the other in fineness for spectral measurement are achieved. A weak absorption spectrum of CO2 molecule as well as the relationship among the spectral intensity, line width and gaseous concentration is obtained at wave number of 6358.65 cm-1. The minimum detection sensitivity is 1.1×10-6 cm-1 for the entire system when using the 6358.65 cm-1 spectral line. Vibration-rotation spectra of CO2 molecule from experiment is basically consistent with the simulation results in the wave number range of 6450~6530 cm-1. Experimental results indicate that this system is not only feasibility but also has high detection sensitivity and spectral resolution, and meets the different spectral detection requirements of gas.
参考文献

[1] R. Engeln, G. Berden, R. Peeter et al.. Cavity enhanced absorption and enhanced absorption magnetic rotation spectroscopy[J]. Rev. Sci. Instrum., 1998, 69(11): 3763~3769

[2] A. O′Keefe. Integrated cavity output analysis of ultra-weak absorption[J]. Chem. Phys. Lett., 1998, 293(5-6): 331~336

[3] A. O′Keefe, J. J. Scherer, J. B. Pual. CW integrated cavity output spectroscopy[J]. Chem. Phys. Lett., 1999, 307(5-6): 343~349

[4] R. Peeters, G. Berden, A. Apituley et al.. Open-path gas detection of ammonia based on cavity-enhanced absorption spectroscopy[J]. Appl. Phys. B, 2000, 71(2): 231~236

[5] V. L. Kasyutich, C. S. E. Bale, C. E. Canosa-Mas et al.. Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser[J]. Appl. Phys. B, 2003, 76(6): 691~697

[6] P. S. Johnston, K. K. lehmann. Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source[J]. Opt. Express, 2008, 16(19): 15013~15023

[7] 范凤英, 宋增云. 2 μm附近二极管激光吸收光谱CO2浓度测量研究[J]. 中国激光, 2012, 39(2): 0215002

    Fan Fengying, Song Zengyun. Measurement of CO2 concentration with tunable diode laser absorption spectroscopy near 2 μm[J]. Chinese J. Lasers, 2012, 39(2): 0215002

[8] Rubin Qi, Zhenhui Du, Dongyu Gao et al.. Wavelength modulation spectroscopy based on quasi-continuous-wave diode lasers[J]. Chin. Opt. Lett., 2012, 10(3): 033001

[9] A. O′Keefe, D. A. G. Deaon. Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources[J]. Rev. Sci. Instrum., 1988, 59(12): 2544~2551

[10] D. Romanini, A. A. Kachanov, N. Sadeghi et al.. CW cavity ringdown absorption spectroscopy[J]. Chem. Phys. Lett., 1997, 264(3-4): 316~322

[11] J. B. Paul, L. Lapson, J. G. Anderson. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Appl. Opt., 2001, 40(27): 4904~4910

[12] D. S. Baer, J. B. Paul, M. Gupta et al.. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J]. Appl. Phys. B, 2002, 75(2-3): 261~265

[13] 裴世鑫, 崔芬萍, 詹煌 等. 基于半导体激光的腔增强吸收光谱技术研究[J]. 光学学报, 2009, 29(3): 831~837

    Pei Shixin, Cui Fenping, Zhan Yu et al.. Cavity-enhanced absorption spectroscopy based on diode laser[J]. Acta Optica Sinica, 2009, 29(3): 831~837

[14] V. L. Kasyutich, P. A. Martin, R. J. Holdsworth et al.. An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2/13CO2 measurement[J]. Appl. Phys. B, 2006, 85(2-3): 413~420

[15] D. R. Herriott, H. Kogelnik, R. Kompfner. Off-axis paths in spherical mirror interferometers[J]. Appl. Opt., 1964, 3(4): 523~526

[16] D. R. Herriott, H. J. Shulte. Folded optical delay lines[J]. Appl. Opt., 1965, 4(8): 883~889

龙精明, 周卫东, 吴志伟. 基于LabVIEW的气体高分辨率光谱探测系统[J]. 中国激光, 2013, 40(1): 0115003. Long Jingming, Zhou Weidong, Wu Zhiwei. A High Sensitive Spectral Detection System of Gaseous Measurement Based on LabVIEW[J]. Chinese Journal of Lasers, 2013, 40(1): 0115003.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!