激光与光电子学进展, 2017, 54 (9): 092303, 网络出版: 2017-09-06   

LED圆筒太阳花散热器设计与实验 下载: 562次

Design and Experiment of LED Cylindric Sunflower Radiator
作者单位
华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
摘要
为了提高发光二极管(LED)的散热能力, 基于烟囱效应, 在传统太阳花散热器外侧加装圆筒壁, 形成特殊的烟囱结构。运用Solidworks软件构建三维模型, 用其插件Flow Simulation进行热仿真, 并以散热器翅片数12个、最大直径70 mm、高度40 mm为基础模型参数, 进行优化研究。研究表明, 在翅片数为20个、最大直径为85 mm、高度为65 mm时, LED圆筒太阳花散热器的散热效果最好。此时, LED的最高温度为48.98 ℃, 比优化前降低了13.05 ℃。当功率为8, 12, 16, 19 W时, LED芯片的最高温度都满足LED工作的安全要求。对功率为8 W的LED散热器样品的实验测试结果表明, 4个监测点的实际温度与仿真所得温度的平均误差为4.8%, 在允许范围内, 验证了研究的正确性。在功率为32 W时, 配备圆筒太阳花散热器的芯片最高温度仍满足低于125 ℃的技术要求, 并比配备传统太阳花散热器的芯片温度低6.44 ℃。所设计的LED圆筒太阳花散热器为解决大功率LED散热问题提供了一个新的途径。
Abstract
In order to improve the cooling capacity of light emitting diode (LED), based on the principle of the chimney effect, the cylinder is added to traditional sunflower radiator to form a special chimney structure. We build a three-dimensional model by adopting Solidworks, and use its plug called Flow Simulation to simulate the model. The model with the number of fins of 12, the maximum diameter of 70 mm and the hight of radiator of 40 mm is optimized. Studies have shown when the number of fins is 20, the maximum diameter is 85 mm and the hight of radiator is 65 mm, LED cylindric sunflower radiator have the best cooling capacity. At the moment, the optimized highest temperature of LED is 48.98 ℃, which is reduced by 13.05 ℃. The temperature of the LED can meet the security requirements when the power of the LED chips are 8, 12, 16, 19 W. The LED radiator sample with the power of 8 W is experimentally tested. The results show that the average error between the actual temperature of the 4 monitoring points and the simulated temperature is 4.8%, which is within the allowable range. It confirms the correctness of the simulation steps. When the power is 32 W, the highest temperature of the LED chips still meet the technical requirements of less than 125 ℃. Which is 6.44 ℃ lower than that of the traditional sunflower radiator. In conclusion, the designed LED cylindric sunflower radiator can provide a new way to solve the heat dissipation problem of high power LED.
参考文献

[1] 杨 初, 金尚忠, 邵茂丰, 等. 玻璃基板COB封装的LED性能研究[J]. 激光与光电子学进展, 2015, 52(1): 012304.

    Yang Chu, Jin Shangzhong, Shao Maofeng, et al. Research on LED performance of glass substrate with COB packaging[J]. Laser & Optoelectronics Progress, 2015, 52(1): 012304.

[2] Mueller-Mach R, Mueller G O. White-light-emitting diodes for illumination[C]. Symposium on Integrated Optoelectronics. International Society for Optics and Photonics, 2000: 30-41.

[3] Krames M R, Shchekin O B, Mueller-Mach R, et al. Status and future of high-power light-emitting diodes for solid-state lighting[J]. Journal of Display Technology, 2007, 3(2): 160-175.

[4] 田立新, 文尚胜, 黄伟明, 等. 大功率LED液冷热沉结构与换热效果研究[J]. 光学学报, 2015, 35(3): 0323003.

    Tian Lixin, Wen Shangsheng, Huang Weiming, et al. Study on the heat sink structure and heat transfer effect of liguid cooling system for high power LEDs[J]. Acta Optica Sinica, 2015, 35(3): 0323003.

[5] Liny C, Nguyen T, Zhou Y, et al. Materials challenges and solutions for the packaging of high power LEDs[C]. International Microsystems, Packing, Assembly Conference, Taiwan, China: IEEE, 2006: 177-180.

[6] 刘 超, 傅仁利, 顾席光, 等. 芯片级LED封装光源结构散热性能的数值模拟[J]. 激光与光电子学进展, 2016, 53(12): 122301.

    Liu Chao, Fu Rengli, GuXiguang, et al. The structure of chip scale package for LED light sources and its thermal performance analysis based on numerical simulation[J]. Laser & Optoelectronics Progress, 2016, 53(12): 122301.

[7] Arik M, Petroski J, Weaver S. Thermal challenges in the future generation solid state lighting applications: light emitting diodes[C]. IEEE Intersociety Conf. Thermal Phenomena, Hawaii: IEEE, 2002: 113-120.

[8] Dialameh L, Yaghoubi M, Abouali O. Natural convection from an array of horizontal rectangular thick fins with short length[J]. Applied Thermal Engineering, 2008, 28(17): 2371-2379.

[9] Culham J R, Muzychka Y S. Optimization of plate fin heat sinks using entropy generation minimization[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 159-165.

[10] 李 中, 李 勇, 汤应戈, 等. 大功率LED太阳花散热器的结构优化[J]. 激光与光电子学进展, 2012, 49(10): 102201.

    Li Zhong, Li Yong, Tang Yingge, et al. Structure optimization of radiation-shaped heat sink for high power LED[J]. Laser & Optoelectronics Progress, 2012, 49(10): 102201.

[11] 李 杨, 邹 军, 朱 伟, 等. 三维发光LED灯片散热设计和测试研究[J]. 激光与光电子学进展, 2015, 52(11): 112203.

    Li Yang, Zou Jun, Zhu Wei, et al. Study on thermal dissipation and measurement of three-dimensional light-emitting LED[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112203.

[12] 唐柳青, 余桂英, 唐 玮, 等. 基于LED灯具热流场分布均匀化的散热设计[J]. 光电工程, 2015, 42(6): 78-84.

    Tang Liuqing, Yu Guiying, Tang Wei, et al. Thermal design of LED lumininaires based on uniform distribution of heat flow field[J]. Opto-Electronic Engineering, 2015, 42(6): 78-84.

[13] 朱 鹏. 基于烟囱效应对大功率LED灯的强化散热[D]. 沈阳: 大连理工大学, 2014.

    Zhu Peng. The enhancement of heat dissipation of high power LED lamp with chimney effect[D]. Shenyang: Dalian University of Technology, 2014.

[14] 陈启勇, 何 川, 高园园. 大功率LED路灯散热器自然对流的数值研究[J]. 半导体光电, 2011, 32(4): 498-505.

    Chen Qiyong, He Chuan, Gao Yuanyuan. Numerical study on natural convection of high-power LED street lamp heat sink[J]. Semiconductor Optoelectronics, 2011, 32(4): 498-505.

[15] 李本红, 刘海林. 烟囱效应在大功率LED灯具散热器设计中的影响分析[J]. 电子器件, 2014, 37(2): 221-224.

    Li Benhong, Liu Hailin. Analysis of the chimney effect in thermal design of high-power LED lamps radiator[J]. Chinese Journal of Electron Devices, 2014, 37(2): 221-224.

[16] 刘海林. 大功率LED灯具散热封装组件的优化设计[D]. 宁波: 宁波大学, 2013.

    Liu Hailin. Optimal design of the components in high-power LED lamps thermal package[D]. Ningbo: Ningbo University, 2013.

[17] 李 静, 姬升涛, 刘建勇, 等. 电子元件散热装置的烟囱效应分析[J]. 电子与封装, 2011, 11(6): 36-40.

    Li Jing, Ji Shengtao, Liu Jianyong, et al. Analysis on the stack effect of cooling device of electronic components[J]. Electronics & Packaging, 2011, 11(6): 36-40.

[18] 曾 海. LED散热设计与全方向灯光学设计[D]. 厦门: 华侨大学, 2013.

    Zeng Hai. Heat dissipation design for LED and optical design for omnidirectional light[D]. Xiamen: Huaqiao University, 2013.

[19] 刘 娇, 刘娟芳, 陈清华, 等. 替代100 W白炽灯的新型12 W LED球泡灯的散热性能研究[J]. 发光学报, 2014, 35(7): 866-871.

    Liu Jiao, Liu Juanfang, Chen Qinghua, et al. Thermal management of novel 12 W LED bulb for the substitution of 100 W incandescent bulb[J]. Chinese Journal of Luminescence, 2014, 35(7): 866-871.

唐帆, 郭震宁. LED圆筒太阳花散热器设计与实验[J]. 激光与光电子学进展, 2017, 54(9): 092303. Tang Fan, Guo Zhenning. Design and Experiment of LED Cylindric Sunflower Radiator[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092303.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!