作者单位
摘要
华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
为了提高发光二极管(LED)的散热能力, 基于烟囱效应, 在传统太阳花散热器外侧加装圆筒壁, 形成特殊的烟囱结构。运用Solidworks软件构建三维模型, 用其插件Flow Simulation进行热仿真, 并以散热器翅片数12个、最大直径70 mm、高度40 mm为基础模型参数, 进行优化研究。研究表明, 在翅片数为20个、最大直径为85 mm、高度为65 mm时, LED圆筒太阳花散热器的散热效果最好。此时, LED的最高温度为48.98 ℃, 比优化前降低了13.05 ℃。当功率为8, 12, 16, 19 W时, LED芯片的最高温度都满足LED工作的安全要求。对功率为8 W的LED散热器样品的实验测试结果表明, 4个监测点的实际温度与仿真所得温度的平均误差为4.8%, 在允许范围内, 验证了研究的正确性。在功率为32 W时, 配备圆筒太阳花散热器的芯片最高温度仍满足低于125 ℃的技术要求, 并比配备传统太阳花散热器的芯片温度低6.44 ℃。所设计的LED圆筒太阳花散热器为解决大功率LED散热问题提供了一个新的途径。
光学器件 散热 圆筒太阳花散热器 正交优化 烟囱效应 最高温度 
激光与光电子学进展
2017, 54(9): 092303
作者单位
摘要
1 华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
2 华侨大学机电及自动化学院, 福建 厦门 361021
为了提高发光二极管(LED)的散热性能,基于烟囱效应原理,设计了一种特殊的直筒式烟囱结构的LED冷却用散热器。通过Solidworks软件构建三维模型,利用其插件Flow Simulation对构建的模型进行热仿真。研究了不同烟囱高度、通风口形状和大小对烟囱效应散热效果的影响。研究结果表明:烟囱效应有效地提高了散热器的对流散热性能。当烟囱高度为50 mm、通风口等效直径为8 mm、通风口形状为梯形时,LED最高温度为61.60 ℃,比优化前降低了6.54 ℃。与传统散热器对比,LED最高温度降低了8.89 ℃。实验中4个监测点的实际温度与仿真所得温度的平均误差为4.0%,在允许范围内,验证了以上研究的正确性。所设计的散热器可以很好地满足自然对流条件下LED的工作要求。
光学器件 散热 散热器 烟囱效应 最高温度 发光二极管 
激光与光电子学进展
2017, 54(7): 072301
作者单位
摘要
1 华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
2 华侨大学机电及自动化学院, 福建 厦门 361021
为了提高发光二极管(LED)灯具的散热能力,基于烟囱效应原理,设计了一种新型的LED灯具散热结构。运用SolidWorks软件构建三维模型,利用其Flow Simulation插件进行热仿真。当功率为10 W时, LED芯片的最高温度为81.34 ℃;当功率增加到15 W时,芯片的最高温度变为105.54 ℃,高于其安全工作温度(85 ℃)。提出了在基板中间加入蜂巢散热器的改进方案,使LED芯片的最高温度下降了30.54 ℃,并进行了优化实验。研究结果表明:当蜂巢类型为正六边形、蜂巢边长为6.0 mm、蜂巢壁厚为1.0 mm时,LED异形灯的散热效果最好,LED芯片的最高温度为74.47 ℃,散热器质量为47.19 g。当功率为8,12,15,18 W时,LED芯片的最高温度都满足安全工作要求。通过对8 W的LED异形灯样品进行实验测试,证实了研究的准确性。
光学器件 散热 发光二极管异形灯 烟囱效应 蜂巢 
激光与光电子学进展
2017, 54(6): 062301
作者单位
摘要
1 华侨大学信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
2 华侨大学 机电及自动化学院, 福建 厦门 361021
为了提高LED灯具的散热能力, 基于烟囱效应原理, 设计了一种新型的LED灯具散热结构。该结构仅采用一块圆柱状基板, 不需要散热器, 突破了传统LED灯具的构造模式。运用软件Solidworks构建三维模型, 用其插件Flow Simulation进行热仿真。当功率为10 W时, LED芯片最高温度为81.34 ℃。当功率增加到15 W时, 最高温度变为105.54 ℃, 高于芯片安全工作温度85 ℃。因此, 本文提出在基板中间加入散热器的改进方案, 使LED芯片最高温度下降了30.79 ℃。并以散热器翅片数12个、内环直径20 mm、翅片厚度1 mm为基础模型参数, 进行优化试验。研究表明: 在翅片数为12个、内环直径为12 mm、翅片厚度为1 mm时, LED异形灯的散热效果最好, 此时, LED异形灯的最高温度为72.21 ℃。当功率为8, 13, 15, 17, 19 W时, LED异形灯芯片的温度都满足LED工作的安全要求。经过对8 W的LED异形灯样品的实验测试, 测得其最高温度为53 ℃, 与仿真结果仅相差1.01 ℃, 证实了研究的准确性。所设计的LED异形灯, 为解决大功率LED散热问题提供了一条新的途径。
圆柱状 LED异形灯 烟囱效应 最高温度 散热 无散热器 cylindrical special-shaped LED lamp chimney effect highest temperature radiating without radiator 
发光学报
2017, 38(3): 365
作者单位
摘要
华侨大学信息科学与工程学院福建省光传输与变换重点实验室, 福建 厦门 361021
为了降低发光二极管(LED)灯具的重量和生产成本,根据烟囱效应原理,设计了一种无散热器的LED异形灯。利用Solidworks软件建立三维模型,通过其插件Flow Simulation进行热仿真。并以烟囱高度为30 mm,烟囱通道直径为20 mm的参数为基础模型,研究不同烟囱高度和烟囱通道直径对LED异形灯最高温度的影响。仿真结果表明:对于烟囱高度和烟囱通道直径都为45 mm,基板重量为35.86 g的LED异形灯,当输入功率为6,8,10 W时,其最高温度都低于芯片的安全结温85 ℃,可满足LED安全工作的要求。对8 W的LED异形灯进行实验验证,结果表明LED异形灯的最高温度为73 ℃,与仿真结果仅相差2.06 ℃,验证了仿真的正确性。所设计的无散热器LED异形灯不仅可以很好地满足LED散热要求,而且重量轻、成本低、制造简单。
光学器件 散热 异形灯 烟囱效应 最高温度 
光学学报
2016, 36(9): 0923002
作者单位
摘要
1 华侨大学信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
2 福建泉州世光智能照明技术研究院有限公司, 福建 泉州 362302
为了增强LED灯具的散热能力,根据烟囱效应原理,设计了一种LED球泡灯,其具有特殊的直筒式烟囱结构。利用Solidworks建立三维模型,通过其插件Flow Simulation进行热仿真,并以烟囱高度30 mm、烟囱数量6、通风口长度2 mm的参数为基础模型。通过实验验证,测出该模型的最高温度为69 ℃,与仿真所得出的结果仅相差1.66 ℃,证实了仿真步骤的正确性。以此为基础,对不同烟囱高度和数量、通风口大小对LED芯片最高温度的影响进行研究。研究表明:烟囱效应明显增强了灯具的对流散热性能。在烟囱高度为45 mm、烟囱数量为12、通风口长度为3.5 mm时,LED芯片的最高温度为61.04 ℃,比优化前下降了9.62 ℃。在模型参数相同的条件下,最高温度比不加烟囱结构的LED球泡灯下降了1.9 ℃,且散热器重量下降了2.55 g。在自然对流条件下,所设计的LED球泡灯能很好地满足LED芯片工作要求。
直筒式 LED球泡灯 烟囱效应 最高温度 straight type LED bulb chimney effect highest temperature 
发光学报
2016, 37(5): 624
作者单位
摘要
1 清华大学电子工程系 清华信息科学技术国家实验室(筹),北京 100084
2 清华大学深圳研究生院 半导体照明实验室,广东 深圳 518057
针对基于集成封装发光二级管(COB LED)的半导体照明光源,研究了引流孔的形状、尺寸和位置等对基于烟囱效应的散热器的散热特性的影响。CFD仿真模拟表明,对于50W热功率的COB LED散热结构,在导热板上形成两个面积为15cm2、以光源中心对称的矩形引流孔,可在保持COB LED最高温度小于52℃的条件下,将基于烟囱效应的散热器的重量进一步降低15%。实验结果与模拟结果基本一致。
散热设计 烟囱效应 引流孔 COB LED COB LED heat dissipation design chimney effect conducting holes 
半导体光电
2013, 34(5): 732

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!