强激光与粒子束, 2017, 29 (8): 085106, 网络出版: 2017-06-30  

HIRFL-CSRm冷却束流寿命

Research of the cooling beam lifetime in HIRFL-CSRm
作者单位
1 中国科学院 近代物理研究所, 兰州 730000
2 中国科学院大学, 北京 100049
摘要
实验研究了HIRFL-CSRm中电子冷却装置对C6+,Ar15+两种束流寿命的影响。首先, 通过对比实验的测量确定电子冷却可以有效提高束流寿命; 其次, 探究了电子冷却装置中的各项参数(主要是电子束密度分布、流强、能量、绝热展开因子)是如何影响束流寿命的, 通过改变电子束参数, 测量束流寿命的变化趋势和规律, 并且结合电子冷却相关理论对实验结果给予解释, 最终通过实验优化和确定最佳的冷却装置参数, 使束流在HIRFL-CSRm上获得了较高的寿命, 从而提高HIRFL-CSRm束流累积过程中的流强增益。
Abstract
The main Cooling Storage Ring (CSRm) of HIRFL-CSR is used to accumulate, accelerate and extract the charged ion beam to experimental terminal. During accumulation in CSRm, the Multiple Multiturn Injection method with electron cooling is applied at the injection energy to increase beam intensity. Theoretical analysis suggests that the cooling rate and beam lifetime have a strong influence on the beam intensity. On the one hand, electron cooling can quickly shrink the size, divergence and the momentum spread of stored ion beams, which is also used to reduce beam loss caused by Intra Beam Scattering (IBS). On the other hand, the recombination effects between electrons and ions will result in the beam loss. Some experiments on C6+ beam and Ar15+ beam were carried out in CSRm to investigate the relationship between electron cooling and beam lifetime. The beam lifetime was remarkably increased when electron cooling was applied. The effects of the electron beam parameters (density, current, energy and expansion factor) on the ion beam lifetime were measured. The results of the measurement were analyzed based on the electron cooling and recombination theory, and how the electron cooling affect the beam lifetime was studied. According to the measurement results and the analysis, the electron beam parameters were optimized to increase the beam lifetime and the ion beam intensity could be increased to a high level accordingly.
参考文献

[1] 彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26: 090201. (Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor. High Power Laser and Particle Beams, 2014, 26: 090201)

[2] 邓建军, 王勐, 谢卫平, 等.面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26: 100201. (Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor. High Power Laser and Particle Beams, 2014, 26: 100201)

[3] 李正宏, 黄洪文, 王真, 等. Z箍缩驱动聚变-裂变混合堆总体概念研究进展[J]. 强激光与粒子束, 2014, 26: 100202.(Li Zhenghong, Huang Hongwen, Wang Zhen, et al. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor. High Power Laser and Particle Beams, 2014, 26: 100202)

[4] 李茂生, 师学明, 刘荣, 等.次临界能源堆物理设计进展[J]. 强激光与粒子束, 2014, 26: 100203.(Li Maosheng, Shi Xueming, Liu Rong, et al. Progress in physics design of fusion-fission hybrid energy reactor. High Power Laser and Particle Beams, 2014, 26: 100203)

[5] 周俊, 原有进, 杨建成, 等. CSRe电子冷却模式下核质量测量研究[J]. 原子核物理评论, 2009, 26(1):33-35.(Zhou Jun, Yuan Youjin, Yang Jiancheng, et al. Study of nuclear mass measurement by electron cooling mode in CSRe. Nuclear Physics Review, 2009, 26(1):33-35)

[6] 刘娟.高能重离子辐照的ODS钢断裂韧性的研究[D]. 北京:中国科学院大学, 2015:1-8.(Liu Juan.Fracture toughness of ODS steels under high-energy heavy-ion irradiation. Beijing: University of Chinese Academy of Sciences, 2015: 1-8)

[7] 杨晓东, Parkhomchuk V V, 赵红卫, 等. HIRFL-CSR主环电子冷却模拟计算[J].高能物理与核物理, 2003, 27(9): 826-827.(Yang Xiaodong, Parkhomchuk V V , Zhao Hongwei, et al. Simulation and calculation of electron cooling in HIRFL-CSR main ring. High Energy Physics and Nuclear Physics, 2003, 27(9): 826-827)

[8] 冒立军.HIRFL-CSRm电子冷却模拟与实验[D]. 北京:中国科学院研究生院, 2008:92-93.(Mao Lijun.Simulation and experiments of electron cooling in HIRFL-CSRm. Beijing: Graduate School of Chinese Academy of Sciences, 2008: 92-93)

[9] 汤梅堂. 电子冷却装置对HIRFL-CSR的影响[D]. 北京:中国科学院大学, 2016:15-16.(Tang Meitang. The influence of electron cooler device on HIRFL-CSR. Beijing: University of Chinese Academy of Sciences, 2016: 15-16)

[10] Wolf A, Gweinner G, Linkemann J, et al. Recombination in electron coolers[J]. Nuclear Instruments and Methods in Physics Research A, 2000, 441: 183-184.

[11] 饶亦农. HIRFL-CSR电子冷却[D]. 兰州:中国科学院近代物理研究所, 1997:136-145.(Rao Yinong. The electron cooler of HIRFL-CSR. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 1997: 136-145)

[12] 薛迎利, 蔡晓红, 于得洋. HIRFL-CSR实验环中束流损失机制及寿命研究[J]. 原子核物理评论, 2008, 25(4):354-357.(Xue Yingli, Cai Xiaohong, Yu Deyang. Loss mechanism and life of ion beam in HIRFL-CSRe. Nuclear Physics Review, 2008, 25(4): 354-357)

[13] Meshkov I, Sidorin A, Smirnov A, et al. BETACOOL Physics Guide for simulation of long term beam dynamics in ion storage rings[OL]. 2007. http: //lepta.jinr.ru/betacool.

[14] 李国宏. 电容式束流位置探测器在HIRFL-CSR电子冷却实验中的应用[D]. 北京:中国科学院研究生院, 2009:56-57.(Li Guohong. Application of capacitive beam position monitor in HIRFL-CSR electron cooling experiments. Beijing: Graduate University of Chinese Academy of Sciences, 2009: 56-57)

[15] 夏国兴, 夏佳文, 刘伟, 等. HIRFL-CSR电子冷却系统空心电子束性能研究[J]. 强激光与粒子束, 2003, 15(8):809-811.(Xia Guoxing, Xia Jiawen, Liu Wei, et al. characteristic studies on hollow electron beam in HIRFL-CSR e-cooler system. High Power Laser and Particle Beams, 2003, 15(8):809-811)

[16] Parkhomchuk V. Limitations of ion beam brightness with electron cooling—theory and experiment[C]//AIP Conference Proceedings. 2002:326-327.

秦志明, 冒立军, 赵贺, 汤梅堂, 李杰, 杨晓东, 杨建成, 阮爽, 吴波, 王耿, 刘杰, 乔舰. HIRFL-CSRm冷却束流寿命[J]. 强激光与粒子束, 2017, 29(8): 085106. Qin Zhiming, Mao Lijun, Zhao He, Tang Meitang, Li Jie, Yang Xiaodong, Yang Jiancheng, Ruan Shuang, Wu Bo, Wang Geng, Liu Jie, Qiao Jian. Research of the cooling beam lifetime in HIRFL-CSRm[J]. High Power Laser and Particle Beams, 2017, 29(8): 085106.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!