赵贺 1张鹏 1,2,*杨志群 3欧阳举 1[ ... ]姜会林 1
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130012
2 长春理工大学电子信息工程学院,吉林 长春 130012
3 天津大学精密仪器与光电子工程学院,天津 300072
为了顺应自由空间光通信多调制格式兼容的趋势,改善系统灵活性差、成本较高等问题,提出一种基于双IQ调制器的多调制格式兼容的激光通信发射方案。首先,基于Optisystem软件建立系统模型仿真分析,所得眼图和星座图验证了所提方案的正确性;然后,研制了多调制格式兼容发射硬件,并实验研究了调制格式的兼容性、可切换性和通信性能。实验结果表明:所设计硬件兼容发射OOK、BPSK、DPSK、QPSK、PM-DQPSK 5种调制格式;速率分档可调,最高可达40 Gbit/s;当发射端产生40 Gbit/s PM-DQPSK调制格式信号时,在离线接收条件下,误码率为10-7时的灵敏度达到-39.8 dBm。通信调制仿真及实验结果验证了所设计方案的可行性,所得到结果也为空间激光通信系统设计提供了技术参考。
光通信 空间激光通信 多调制格式兼容系统 IQ调制器 灵敏度 
中国激光
2022, 49(7): 0706004
作者单位
摘要
1 济南大学信息科学与工程学院,济南 250022
2 山东省网络环境智能计算技术重点实验室,济南 250022
3 鲁东大学信息与电气工程学院,烟台 264025
通过基于密度泛函理论的第一性原理计算,研究了Mg单掺杂、N单掺杂和不同浓度的Mg-N共掺杂β-Ga2O3的结构性质、电子性质和光学性质,以期获得性能比较优异的p型β-Ga2O3材料。建立了五种模型:Mg单掺杂、N单掺杂、1个Mg-N共掺杂、2个Mg-N共掺杂和3个Mg-N共掺杂β-Ga2O3。经过计算,3个Mg-N共掺杂β-Ga2O3体系的结构最稳定。此外,在5种模型中,3个Mg-N共掺杂β-Ga2O3体系的禁带宽度是最小的,并且N 2p和Mg 3s贡献的占据态抑制了氧空位的形成,从而增加了空穴浓度。因此,3个Mg-N共掺杂β-Ga2O3体系表现出优异的p型性质。3个Mg-N共掺杂体系的吸收峰出现明显红移,在太阳盲区的光吸收系数较大,这归因于导带Ga 4s、Ga 4p、Mg 3s向价带O 2p、N 2p的带间电子跃迁。本工作将为p型β-Ga2O3日盲光电材料的研究和应用提供理论指导。
掺杂 p型掺杂 结构性质 电子性质 光学性质 第一性原理 β-Ga2O3 β-Ga2O3 doping p-type doping structural property electronic property optical property first-principle 
人工晶体学报
2022, 51(1): 56
作者单位
摘要
兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
针对医学图像融合过程中出现的细节损失严重、视觉效果不佳问题,提出了一种基于非下采样轮廓波变换(NSCT)与离散小波变换(DWT)的脉冲耦合神经网络(PCNN)医学图像融合算法。首先,利用NSCT处理医学源图像,得到相应的低频和高频子带,并利用DWT对得到的低频子带进行处理。然后,利用PCNN对低频子带进行融合,将平均梯度和改进型拉普拉斯能量和作为PCNN的输入项,将信息熵与匹配度结合实现对高频子的融合。最后,利用多尺度逆变换将低频子带和高频子带图像进行融合。实验结果表明,所提方法能够有效提升融合图像的对比度并保留源图像的细节信息,在主观和客观评价上均有优良的性能表现。
医用光学 图像融合 非下采样轮廓波变换 离散小波变换 脉冲耦合神经网络 
激光与光电子学进展
2021, 58(20): 2017002
秦志明 1,2,*冒立军 1赵贺 1,2汤梅堂 1[ ... ]乔舰 1,2
作者单位
摘要
1 中国科学院 近代物理研究所, 兰州 730000
2 中国科学院大学, 北京 100049
实验研究了HIRFL-CSRm中电子冷却装置对C6+,Ar15+两种束流寿命的影响。首先, 通过对比实验的测量确定电子冷却可以有效提高束流寿命; 其次, 探究了电子冷却装置中的各项参数(主要是电子束密度分布、流强、能量、绝热展开因子)是如何影响束流寿命的, 通过改变电子束参数, 测量束流寿命的变化趋势和规律, 并且结合电子冷却相关理论对实验结果给予解释, 最终通过实验优化和确定最佳的冷却装置参数, 使束流在HIRFL-CSRm上获得了较高的寿命, 从而提高HIRFL-CSRm束流累积过程中的流强增益。
束流寿命 复合 电子冷却 重离子 加速器 beam lifetime recombination electron cooling heavy ion accelerator 
强激光与粒子束
2017, 29(8): 085106
作者单位
摘要
1 中国科学院 近代物理研究所, 兰州 730000
2 中国科学院大学, 北京 100049
放射性次级束流分离器(HFRS)是强流重离子加速器装置(HIAF)上开展放射性次级物理研究的重要装置。HFRS是飞行时间型(PF)碎片分离器,具有大磁刚度、大接受度、大孔径磁铁以及高动量分辨的特点。HFRS采用Bρ-ΔE-Bρ方法纯化弹核碎裂或裂变反应产生的放射性核素,是开展高精度储存环内实验及环外实验研究的重要工具。主要介绍HFRS分离纯化奇异核的能力,采用MOCADI程序模拟单降能器与双降能器下典型弹核碎裂反应和裂变反应中粒子的鉴别和纯化。模拟结果表明: HFRS具有很好的消色散和聚焦特性,对于弹核碎裂反应中轻核的分离采用单降能器系统即可得到很好的纯化效果; 而弹核碎裂反应中重核的分离则需采用双降能器系统才可得到很好的纯化效果; 对于裂变反应,由于裂变反应的能散较大,则在采用双降能器系统时也仅仅能得到一定的纯化效果。
次级束分离器 弹核碎裂反应 裂变反应 降能器 纯化 放射性次级束流分离器 强流重离子加速器装置 fragment separator projectile fragmentation fission degrader purification superconducting fragment separator high intensity heavy-ion accelerator facility 
强激光与粒子束
2017, 29(5): 056008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!