发光学报, 2018, 39 (10): 1347, 网络出版: 2018-11-25  

聚苯胺与还原石墨烯复合材料的微波吸收性能

Microwave Absorption Property of Polyaniline/Reduced Grapheme
作者单位
北京交通大学光电子技术研究所 发光与光信息教育部重点实验室, 北京 100044
摘要
采用化学氧化法制备聚苯胺与还原石墨烯复合材料。复合材料的结构、晶型和电磁参数分别通过X射线衍射仪及HP8722ES型矢量网络分析仪进行表征、测试与分析。结果表明, 同聚苯胺相比, 聚苯胺与还原石墨烯复合材料的介电损耗明显增加。而且在复合材料中, 石墨烯的含量越大, 材料的微波吸收性能越好, 在频率波段(9.5~13.4GHz)反射损耗均小于-10 dB, 并在频率为11.2 GHz时达到最大反射损耗-29.69 dB。聚苯胺与还原石墨烯的复合使得材料的载流子迁移率变大, 吸波特性得到改善。
Abstract
The composite of polyaniline and reduced graphene was prepared through the chemical oxidation synthesis. The structure and electromagnetic parameters of the composites were investigated by XRD and HP8722ES network analyzer. The results show that the dielectric loss of the composite material is significantly higher than polyaniline. When the content of graphene is increased in the composite, the microwave absorption property of the material becomes better. The composite material has a much higher reflection loss and wider bandwidth than pure polyaniline in the frequency range(9.5-13.4 GHz). The combination of polyaniline and reduced grapheme improves the carrier mobility of the material and enhances microwave absorption property of the material consequently.
参考文献

[1] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al.. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x [J]. J. Chem. Soc., Chem. Commun., 1977(16): 578-580.

[2] WALLACE G G, SPINKS G M, KANE-MAGUIRE L A P, et al.. Conductive Electroactive Polymers: Intelligent Materials Systems [M]. 2nd ed. Beijing: Science Press, 2007: 7-8.

[3] BHADRA S, KHASTGIR D, SINGHA N K, et al.. Progress in preparation, processing and applications of polyaniline [J]. Prog. Polym. Sci., 2009, 34(1): 783-810.

[4] 万梅香. 微纳米结构的导电聚合物 [M]. 北京: 清华大学出版社, 2008: 16.

    WAN M X. Conducting Polymers with Micro or Nanometer Structure [M]. Beijing: Tsinghua University Press, 2008: 16.(in Chinese)

[5] SAINI P, CHOUDHARY V, SINGH B P, et al.. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding [J]. Mater. Chem. Phys., 2009, 113(2-3): 919-926.

[6] 廖海星, 喻克雄, 刘敏. 不同质子酸掺杂聚苯胺的吸波性能研究 [J]. 襄樊学院学报, 2005, 26(2): 32-35.

    LIAO H X, YU K X, LIU M. Studies on microwave absorption properties of different proton acid doped polyaniline [J]. J. Xiangfan Univ., 2005, 26(2): 32-35. (in Chinese)

[7] VHANAKHANDE B B, JADHAV S V, KULKAMI D C, et al.. Investigations on the microwave properties of electropolymerised polyaniline thin film [J]. Microw. Opt. Technol. Lett., 2008, 50(3): 761-766.

[8] JADHAV S, JAMADADE S, PURL V. Microwave properties of polyaniline thin film coated on alumina \[C\]. Proceedings of International Conferdence on Microwave: Recent Advances in Microwave Theory and Applications, Jaipur, India, 2008: 130-131.

[9] ZHU Y W, MURALI S, CAI W W, et al.. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater., 2010, 22(35): 3906-3924.

[10] 李云飞, 陈洋, 毕宴钢, 等. 还原石墨烯氧化物-银纳米线柔性复合电极的制备与性能研究 [J]. 发光学报, 2015, 36(5): 545-551.

    LI Y F, CHEN Y, BI Y G, et al.. Fabrication and characterization of reduced graphene oxide/silver nanowires flexible hybrid electrodes [J]. Chin. J. Lumin., 2015, 36(5): 545-551. (in Chinese)

[11] ZHOU G M, WANG D W, YIN L C, et al.. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage [J]. ACS Nano, 2012, 6(4): 3214-3223.

[12] WANG L, HUANG Y, LI C, et al.. Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of grapheme@Fe3O4@C with high microwave absorption performance [J]. Compos. Sci. Technol., 2015, 108: 1-8.

[13] LUO J H, XU Y, YAO W, et al.. Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites [J]. Compos. Sci. Technol., 2015, 117: 315-321.

[14] HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6): 1339.

[15] YANG H J, CAO W Q, ZHANG D Q, et al.. NiO Hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature [J]. ACS Appl. Mater. Interf., 2015, 7(13): 7073-7077.

[16] HUANG X G, ZHANG J, LAI M, et al.. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers [J]. J. Alloys Compd., 2015, 627: 367-373.

[17] 鞠长滨, 王永生, 何大伟, 等. 盐酸掺杂聚苯胺薄膜的隐身性能 [J] . 发光学报, 2011, 32(10): 998-1003.

    JU C B, WANG Y S, HE D W, et al.. Stealthy property of polyaniline film doped by hydrochloric acid [J]. Chin. J. Lumin., 2011, 32(10): 998-1003. (in Chinese)

[18] DING X, HUANG Y, ZONG M. Synthesis and microwave absorption enhancement property of core-shell FeNi3@SiO2 decorated reduced graphene oxide nanosheets [J]. Mater. Lett., 2015, 157: 285-289.

高磊, 何大伟, 王永生. 聚苯胺与还原石墨烯复合材料的微波吸收性能[J]. 发光学报, 2018, 39(10): 1347. GAO Lei, HE Da-wei, WANG Yong-sheng. Microwave Absorption Property of Polyaniline/Reduced Grapheme[J]. Chinese Journal of Luminescence, 2018, 39(10): 1347.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!