光学学报, 2016, 36 (12): 1205001, 网络出版: 2020-05-09   

扫描积分塔尔博特光刻条纹质量影响因素模拟分析

Simulation Analysis on Influencing Factors of Fringe Quality by Displacement Talbot Lithography
作者单位
1 中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209
2 中国科学院大学, 北京 100049
摘要
基于角谱衍射理论,对扫描积分塔尔博特光刻术进行了理论分析与数值模拟。研究了扫描距离、扫描起始位置、扫描速度非匀速以及照明光源不同特性对扫描积分塔尔博特光刻所得光栅条纹质量的影响。模拟结果表明,当扫描距离为塔尔博特周期的整数倍时,扫描起始位置、扫描速度的非匀速性对扫描积分塔尔博特光刻的成像质量影响较小;当入射光源存在一定谱宽或发散角不大于0.05°时,扫描积分塔尔博特光刻仍可得到对比度较一致的倍频光栅条纹,证实了扫描积分塔尔博特光刻具有良好的工艺适用性。扫描积分塔尔博特光刻不需要昂贵而复杂的投影光学系统,可克服塔尔博特自成像有限焦深问题,对掩模与基片的定位精度及涂胶基片的平整度容忍度较高。该方法具有在非平面基底上制备大面积、低成本、高精度周期微纳结构的应用前景。
Abstract
Both theoretical analysis and numerical simulation for displacement Talbot lithography are conducted based on angular spectrum diffraction. The factors which influence the grating fringe quality obtained by displacement Talbot lithography such as displacement distance, starting position, non-uniform displacement velocity and different characteristics of lighting source are also discussed in detail. Simulation results show that, when the displacement distance is integer multiples of Talbot period, the factors of initial position and non-uniform displacement velocity have little influence on imaging quality of displacement Talbot lithography. When there is a certain spectral width of the incident light source or the divergence angle is not larger than 0.05°, the displacement Talbot lithography can still obtain double frequency grating fringes whose contrast is more consistent, which verifies that the displacement Talbot lithography possesses an outstanding process applicability. Displacement Talbot lithography does not require expensive and complicated projection optical system, and can overcome the problem of limited depth of focus for Talbot self-imaging. Meanwhile, displacement Talbot lithography has higher tolerance for the positioning accuracy between mask and substrate as well as the substrate planeness. The method has promising potential to be applied in non-planar substrate for the manufacture of periodical micro structures with wide area, low expense and high precision.
参考文献

[1] 周常河. 微纳光学结构及应用[J]. 激光与光电子学进展, 2009, 46(10): 22-27.

    Zhou Changhe. Micro- & nano- optical structures and applications[J]. Laser & Optoelectronics Progress, 2009, 46(10): 22-27.

[2] 庄杰, 张大伟, 陶春先, 等. 微纳光学在 LED 芯片中应用研究的综述[J]. 光学技术, 2012, 38(1): 98-103.

    Zhuang Jie, Zhang Dawei, Tao Chunxian, et al. A generalization of the application about optical micro-nano structure on LEDs[J]. Optical Technique, 2012, 38(1): 98-103.

[3] 王金光, 李明, 刘剑峰, 等. 微流控芯片在医学检测中的应用[J]. 现代科学仪器, 2007, 17(6): 60-63.

    Wang Jinguang, Li Ming, Liu Jianfeng, et al. The applications of microfluidic in medical detection[J]. Modern Scientific Instruments, 2007, 17(6): 60-63.

[4] 金永龙, 张宇, 顾宁. 基于准分子激光加工技术的内嵌光纤型微流控器件的制备[J]. 中国激光, 2008, 35(11): 1821-1824.

    Jin Yonglong, Zhang Yu, Gu Ning. Fabrication of microchip with embedded optical fibers by excimer laser processing technique[J]. Chinese J Lasers, 2008, 35(11): 1821-1824.

[5] 杨连臣, 李国华, 宋连科, 等. 二元衍射光栅式偏光器件的设计[J]. 光子学报, 1998, 27(9): 833-837.

    Yang Lianchen, Li Guohua, Song Lianke, et al. Design of polarizing devices based on the binary-grating diffraction[J]. Acta Photonica Sinica, 1998, 27(9): 833-837.

[6] 孙庆. 基于衍射光栅的高速光纤光栅解调系统的研究[D]. 北京: 北京理工大学, 2015.

    Sun Qing. Study on high-speed fiber Bragg grating demodulation system based on diffraction grating[D]. Beijing: Beijing Institute of Technology, 2015.

[7] 谢常青, 朱效立, 牛洁斌, 等. 微纳金属光学结构制备技术及应用[J]. 光学学报, 2011, 31(9): 0900128.

    Xie Changqing, Zhu Xiaoli, Niu Jiebin, et al. Micro- and nano-metal structures fabrication technology and applications[J]. Acta Optica Sinica, 2011, 31(9): 0900128.

[8] 姚汉民, 胡松, 邢廷文. 光学投影曝光微纳加工技术[M]. 北京: 北京工业大学出版社, 2006.

    Yao Hanming, Hu Song, Xing Tingwen. Optical projection exposure technology of micro and nano fabrication[M]. Bejing: Beijing University of Technology Press, 2006.

[9] 张锦. 激光干涉光刻技术[D]. 成都: 四川大学, 2003.

    Zhang Jin. Study on laser interferometric lithography[D]. Chengdu: Sichuan University, 2003.

[10] 丁玉成. 纳米压印光刻工艺的研究进展和技术挑战[J]. 青岛理工大学学报, 2010, 31(1): 9-15.

    Ding Yucheng. Research progress of nanoimprint lithography and its technical challenges[J]. Journal of Qingdao Technological University, 2010, 31(1): 9-15.

[11] 吕乃光. 傅里叶光学[M]. 北京: 机械工业出版社, 2006: 90-93.

    Lü Naiguang. Fourier optics [M]. Beijing: China Machine Press, 2006: 90-93.

[12] 张伟. 光栅塔尔博特效应及其在波前传感中的应用[D]. 济南: 山东师范大学, 2015.

    Zhang Wei. Talbot effect of grating and its application in wave-front sensing[D]. Jinan: Shandong Normal University, 2015.

[13] 滕树云, 刘立人, 祖继锋, 等. 脉冲和连续多色光源照明下光栅塔尔博特效应的等价性[J]. 中国激光, 2004, 31(10): 1177-1182.

    Teng Shuyun, Liu Liren, Zu Jifeng, et al. Equivalence of Talbot effect of the grating illuminated by the pulsed laser and continuous polychromatic light[J]. Chinese J Lasers, 2004, 31(10): 1177-1182.

[14] 王俊红. 分形光栅及其自成像效应的研究[D]. 济南: 山东师范大学, 2015.

    Wang Junhong. Study about fractal grating and its self-image effect[D]. Jinan: Shandong Normal University, 2015.

[15] 张宝昊, 周素梅, 杨晓铭, 等. 方形孔径微透镜阵列的塔尔博特效应[J]. 光学学报, 2016, 36(5): 0523001.

    Zhang Baohao, Zhou Sumei, Yang Xiaoming, et al. Talbot effect of square-aperture microlens array[J]. Acta Optica Sinica, 2016, 36(5): 0523001.

[16] 曲伟娟, 闫爱民, 刘立人, 等. 二维斜周期阵列的分数塔尔博特效应[J]. 中国激光, 2006, 33(3): 356-360.

    Qu Weijuan, Yan Aimin, Liu Liren, et al. Fractional Talbot effect of 2D skewed periodic array[J]. Chinese J Lasers, 2006, 33(3): 356-360.

[17] Tan Qiaofeng, Zhang Yan, Jin Guofan. High-efficiency spatial color separation method based on fractional Talbot effect[J]. Chinese Optics Letters, 2009, 7(11): 975-977.

[18] Isoyan A, Jiang F, Cheng Y C, et al. Talbot lithography: self-imaging of complex structures[J]. J Vac Sci Technol B, 2009, 27(6): 2931-2937.

[19] Dunbar L A, Nguyen D, Timotijevic B, et al. Talbot lithography as an alternative for contact lithography for submicron features[C]. SPIE, 2014, 8974: 89740F.

[20] Dammann H, Groh G, Kock M. Restoration of faulty images of periodic objects by means of self-imaging[J]. Applied Optics, 1971, 10(6): 1454-1455.

[21] Stuerzebecher L, Fuchs F, Zeitner U D, et al. High-resolution proximity lithography for nano-optical components[J]. Microelectronic Engineering, 2014, 132: 120-134.

[22] Sato T, Yamada A, Suto T, et al. Printability of defectsin Talbot lithography[J]. Microelectronic Engineering, 2015, 143: 21-24.

[23] Zanke C, Qi M H, Smith H I. Large-area patterning for photonic crystals via coherent diffraction lithography[J]. J Vac Sci Technol B, 2004, 22(6): 3352-3355.

[24] Solak H H, Ekinci Y. Achromatic spatial frequency multiplication: a method for production of nanometer-scale periodic structures[J]. J Vac Sci Technol B, 2005, 23(6): 2705-2710.

[25] Solak H H, Dais C, Clube F. Displacement TalbotLithography: a new method for high-resolution patterning of large areas[J]. Optics Express, 2011, 19(19): 10686-10691.

[26] Solak H H, Dais C, Clube F, et al. Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs[J]. Microelectronic Engineering, 2015, 143: 74-80.

[27] Wang L, Clube F, Dais C, et al. Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography[J]. Microelectronic Engineering, 2016, 161: 104-108.

邓茜, 赵立新, 唐燕, 姚靖威, 刘俊伯, 胡松. 扫描积分塔尔博特光刻条纹质量影响因素模拟分析[J]. 光学学报, 2016, 36(12): 1205001. Deng Qian, Zhao Lixin, Tang Yan, Yao Jingwei, Liu Junbo, Hu Song. Simulation Analysis on Influencing Factors of Fringe Quality by Displacement Talbot Lithography[J]. Acta Optica Sinica, 2016, 36(12): 1205001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!