中国激光, 2017, 44 (3): 0309001, 网络出版: 2017-03-08   

基于迈克耳孙干涉仪的非相干数字全息显微成像

Incoherent Digital Holographic Microscopic Imaging Based on Michelson Interferometer
作者单位
郑州大学物理工程学院,河南 郑州 450001
摘要
采用基于迈克耳孙干涉仪的非相干数字全息显微成像系统能够得到物体在非相干光照明下的全息图。对基于迈克耳孙干涉仪的非相干数字全息显微成像系统进行了理论和实验研究。利用标量衍射理论计算了该系统在记录过程中的点扩展函数,获得了系统横向放大率及重建距离的具体表达式。搭建了基于迈克耳孙干涉仪的非相干数字全息显微成像系统的实验光路,利用CCD记录全息图,用广义相移数字全息干涉术去除孪生像与零级像,并用角谱算法得到了清晰的重建像。实现了分辨率板和洋葱表皮细胞等样品的非相干全息显微成像,验证了该系统的可行性。分辨率板的成像实验表明,该系统的横向分辨率可达512 lp/mm。微米洁面刷软毛的成像实验表明,该系统具有呈现物体三维结构的特性。
Abstract
The incoherent digital holographic microscopic imaging system based on the Michelson interferometer can be used to obtain the hologram of object under illumination of incoherent light. The incoherent digital holographic microscopic imaging system based on the Michelson interferometer is studied theoretically and experimentally. The point spread function of the system in the recording process has been calculated according to the scalar diffraction theory, and the specific expressions of lateral magnification and reconstruction distance of the system are deduced. A experimental light path of incoherent digital holographic microscopic imaging system based on the Michelson interferometer is built, and a CCD is used to record the holograms. A clear reconstruction image is obtained without conjugate image and zero-order image by the generalized phase-shifting digital holographic interferometry and via the angular spectrum algorithm. Furthermore, the incoherent holographic microscopic imaging of a resolution board and onion epidermal cells have been implemented, which proves the feasibility of the system. The imaging experiment of the resolution board shows that a lateral resolution as high as 512 lp/mm can be obtained. The system is able to present the characteristics of the three-dimensional structure of objects, which is verified by the imaging of the micron cleansing brush fur.
参考文献

[1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778.

[2] Goodman J W, Lawrence R W. Digital image formation from electronically detected holograms[J]. Applied Physics Letters, 1967, 11(3): 77-79.

[3] Yeom S, Javidi B, Ferraro P, et al. Three-dimensional color object visualization and recognition using multi-wavelength computational holography[J]. Optics Express, 2007, 15(15): 9394-9402.

[4] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

[5] Shaked N T, Newpher T M, Ehlers M D, et al. Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics[J]. Applied Optics, 2010, 49(15): 2872-2878.

[6] Mico V, Zalevsky Z, García-Martínez P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Applied Optics, 2006, 45(5): 822-828.

[7] Almoro P F, Pedrini G, Gundu P N, et al. Phase microscopy of technical and biological samples through random phase modulation with a diffuser[J]. Optics Letters, 2010, 35(7): 1028-1030.

[8] Mertz L, Young N O. Fresnel transformation of images[C]. London: Optical Instruments and Techniques, 1961: 305-310.

[9] Yamaguchi I,Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

[10] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 2007, 32(8): 912-914.

[11] Kim M K. Full color natural light holographic camera[J]. Optics Express, 2013, 21(8): 9636-9642.

[12] Rosen J, Brooker G. Fluorescence incoherent color holography[J]. Optics Express, 2007, 15(5): 2244-2250.

[13] Bouchal P, Kapitán J, Chmelik R, et al. Point spread function and two-point resolution in Fresnel incoherent correlation holography[J]. Optics Express, 2011, 19(16): 15603-15620.

[14] Wan Y H, Man T L, Wang D Y. Incoherent off-axis Fourier triangular color holography[J]. Optics Express, 2014, 22(7): 8565-8673.

[15] 万玉红, 满天龙, 陶世荃. 非相干全息术成像特性及其研究进展[J]. 中国激光, 2014, 41(2): 0209004.

    WanYuhong, Man Tianlong, Tao Shiquan. Imaging characteristics and research progress of incoherent holography[J]. Chinese J Lasers, 2014, 41(2): 0209004.

[16] 陈 昊. 菲涅尔非相干相关数字全息术关键问题研究[D]. 北京: 北京工业大学, 2013: 19-58.

    Chen Hao. Investigation of key problems on Fresnel incoherent correlation digital holography[D]. Beijing: Beijing University of Technology, 2013: 19-58.

[17] Brooker G, Siegel N, Wang V, et al. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy[J]. Optics Express, 2011, 19(6): 5047-5062.

[18] Bouchal P, Bouchal Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams[J]. Journal of the European Optical Society Rapid Publications, 2013, 8: 13011.

[19] Teeranutranont S, Yoshimori K. Digital holographic three-dimensional imaging spectrometry[J]. Applied Optics, 2013, 52(1): A388-A396.

[20] 刘英臣. 菲涅尔非相干数字全息的记录和再现[D]. 广州: 华南师范大学, 2013: 10-12.

    Liu Yingchen. Recording and reconstruction of Fresnel incoherent digital holography[D]. Guangzhou: South China Normal University, 2013: 10-12.

[21] 李德阳, 杜艳丽, 张文斌, 等. 非相干同轴数字全息成像系统研究[J]. 光电子·激光, 2015, 26(6): 1157-1161.

    Li Deyang, Du Yanli, Zhang Wenbin, et al. Study of incoherent on-axis digital holography imaging system[J]. Journal of Optoelectronics·Laser, 2015, 26(6): 1157-1161.

[22] 徐先锋. 广义相移数字全息干涉术相移提取及波前再现算法的理论及实验研究[D]. 济南: 山东大学, 2008: 53-58.

    Xu Xianfeng. Theoretical and experimental study of the algorithms of phase shift extraction and wave-front reconstruction in digital generalized phase-shifting interferometry[D]. Jinan: Shandong University, 2008: 53-58.

[23] 李俊昌, 宋庆和, Pascal P, 等. 离轴数字全息波前重建算法讨论[J]. 中国激光, 2014, 41(2): 0209008.

    Li Junchang, Song Qinghe, Pascal P, et al. Discussion of wavefront reconstruction algorithm of off-axis digital holography[J]. Chinese J Lasers, 2014, 41(2): 0209008.

张文斌, 刘亚飞, 李德阳, 马凤英, 弓巧侠, 杜艳丽. 基于迈克耳孙干涉仪的非相干数字全息显微成像[J]. 中国激光, 2017, 44(3): 0309001. Zhang Wenbin, Liu Yafei, Li Deyang, Ma Fengying, Gong Qiaoxia, Du Yanli. Incoherent Digital Holographic Microscopic Imaging Based on Michelson Interferometer[J]. Chinese Journal of Lasers, 2017, 44(3): 0309001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!