半导体光电, 2019, 40 (6): 833, 网络出版: 2019-12-17  

外电场作用下InP电子结构与光学性质的计算

Calculation of Electronic Structure and Optical Properties of InP Under External Electric Field
作者单位
1 南京理工大学 电子工程与光电技术学院, 南京 210094
2 滨州学院 物理与电子科学系, 山东 滨州 256600
摘要
磷化铟(InP)已成为光电器件和微电子器件不可或缺的重要半导体材料。采用基于密度泛函理论框架下的第一性原理平面波赝势方法, 计算了不同外电场作用下InP超胞的电子结构和光学性质。计算结果表明: 未加电场时InP的能隙值为0.876eV, 随着z轴方向的外电场增大, 该值逐渐减小, 当电场强度达到1.0×108V/cm时, InP的禁带宽度几乎为0。InP导带区域的总态密度随着外电场增大逐渐向费米面偏移, 态密度跨度变小, 而价带与导带的情况恰恰相反。外电场对介电函数虚部的影响主要体现在低能量区域(0~7eV), 而在较高能量区域内可忽略不计。外电场对InP吸收系数的影响主要集中在近红外波段。
Abstract
Indium phosphide (InP) has become an indispensable semiconductor material for optoelectronic and microelectronic devices. In this paper, the band structure, state density and optical properties of InP under different electric fields were calculated by the first-principles plane wave pseudopotential method based on density functional theory framework. Calculation results show that the energy gap of InP is 0.876eV when no electric field is applied, and it becomes smaller with the increasing electric field strength in the z-axis, and when the electric field strength reaches 1.0×108V/cm, the band gap of InP is almost 0. The total density of states of InP conduction band region gradually shifts to Fermi surface and the span gradually decrease with the increasing electric field strength, while for the valence band, it is just the opposite situation. The Influence of external electric fields on imaginary part of the dielectric function is mainly in low energy range (0~7eV) and is negligible in higher energy range. The influence of external electric field on absorption coefficient of InP is mainly concentrated in the near-infrared band.
参考文献

[1] Wang S. Fundamentals of Semiconductor Theory and Device Physics[M]. NJ: Prentice-Hall, Inc., 1989.

[2] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. of Appl. Phys., 2001, 89(11): 5815.

[3] Herzinger C M, Snyder P G, Johs B, et al. InP optical constants between 0.75 and 5.0eV determined by variable-angle spectroscopic ellipsometry[J]. J. of Appl. Phys., 1995, 77(4): 1715-1724.

[4] Bouarissa N. The effect of hydrostatic pressure on the electronic and optical properties of InP[J]. Solid-State Electron., 2000, 44(12): 2193-2198.

[5] Lesecq M, Beaugeois M, Maricot S, et al. Optical switch using InP optical wire technology[J]. Proc. of SPIE, 2007, 6593: 659305-659305-11.

[6] 李晋闽, 郭里辉, 王力鸣, 等. 红外InGaAsP光电阴极研究[J]. 光子学报, 1991, 20(3): 262-269.

    Li Jinmin, Guo Lihui, Wang Liming, et al. Research of infrared InGaAsP photocathode[J]. Acta Photonica Sinica, 1991, 20(3): 262-269.

[7] 刘 峰, 石 峰, 焦岗成, 等. 短波红外阈场助式光电阴极p-InGaAs/p-InP异质结设计与仿真[J]. 红外技术, 2015, 37(9): 778-782.

    Liu Feng, Shi Feng, Jiao Gangcheng, et al. Design and simulation of p-InGaAs/p-InP heterojunction within short-wave infrared threshold field-assisted photocathode[J]. Infrared Technol., 2015, 37(9): 778-782.

[8] Taylor M B, Barrera G D, Allan N L, et al. Free-energy derivatives and structure optimization within quasi-harmonic lattice dynamics[J]. Phys. Rev. B, 1997, 56(22): 14380-14390.

[9] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. of Physics: Condensed Matter, 2002, 14(11): 2717-2744.

[10] Komsa H P, Arola E, Pakarinen J, et al. Beryllium doping of GaAs and GaAsN studied from first principles[J]. Phys. Rev. B, Condensed Matter, 2009, 79(11): 115208.

[11] Zhang L, Mcmahon W E, Wei S H. Passivation of deep electronic states of partial dislocations in GaAs: A theoretical study[J]. Appl. Phys. Lett., 2010, 96(12): 121912.

[12] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett., 1980, 45(7): 566-569.

[13] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1998, 77(18): 3865-3868.

[14] Chadi D J. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1977, 16(4): 1746-1747.

[15] Pickett W E. Pseudopotential methods in condensed matter applications[J]. Computer Phys. Reports, 1989, 9(3): 115-197.

[16] Tasker W P. The stability of ionic crystal surfaces[J]. J. of Physics C: Solid State Phys., 1979, 12(22): 4977-4984.

[17] Li X Z, Xie Q, Chen Q, et al. The study on the electronic structure and optical properties of OsSi2[J]. Acta Phys. Sin., 2010, 59(3): 2016-2021.

[18] Du Y, Chang B, Wang H, et al. First principle study of the influence of vacancy defects on optical properties of GaN[J]. Chinese Opt. Lett., 2012, 10(5): 39-43.

[19] Spicer W E. Photoemissive, photoconductive and optical absorption studies of Alkali-antimony compounds[J]. Phys. Rev., 1958, 112(1): 114-122.

李亚, 张俊举, 杜玉杰, 沙娓娓, 陈若曦. 外电场作用下InP电子结构与光学性质的计算[J]. 半导体光电, 2019, 40(6): 833. LI Ya, ZHANG Junju, DU Yujie, SHA Weiwei, CHEN Ruoxi. Calculation of Electronic Structure and Optical Properties of InP Under External Electric Field[J]. Semiconductor Optoelectronics, 2019, 40(6): 833.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!