中国激光, 2021, 48 (4): 0401008, 网络出版: 2021-01-15   

光纤气体激光光源研究进展及展望(Ⅰ): 基于受激拉曼散射 下载: 1812次

Progress and Prospects of Fiber Gas Laser Sources (Ⅰ) :Based on Stimulated Raman Scattering
王泽锋 1,2,3,*黄威 1,2李智贤 1,2周智越 1,2崔宇龙 1,2李昊 1,3
作者单位
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
引用该论文

王泽锋, 黄威, 李智贤, 周智越, 崔宇龙, 李昊. 光纤气体激光光源研究进展及展望(Ⅰ): 基于受激拉曼散射[J]. 中国激光, 2021, 48(4): 0401008.

Zefeng Wang, Wei Huang, Zhixian Li, Zhiyue Zhou, Yulong Cui, Hao Li. Progress and Prospects of Fiber Gas Laser Sources (Ⅰ) :Based on Stimulated Raman Scattering[J]. Chinese Journal of Lasers, 2021, 48(4): 0401008.

参考文献

[1] Minck R W, Terhune R W, Rado W G. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4[J]. Applied Physics Letters, 1963, 3(10): 181-184.

[2] Brink D J, Proch D. Efficient tunable ultraviolet source based on stimulated Raman scattering of an excimer-pumped dye laser[J]. Optics Letters, 1982, 7(10): 494-496.

[3] Loree T R, Cantrell C D, Barker D L. Stimulated Raman emission at 9.2μm from hydrogen gas[J]. Optics Communications, 1976, 17(2): 160-162.

[4] Rabinowitz P, Kaldor A, Brickman R, et al. Waveguide H2 Raman laser[J]. Applied Optics, 1976, 15(9): 2005-2006.

[5] Brasseur J K, Repasky K S, Carlsten J L. Continuous-wave Raman laser in H2[J]. Optics Letters, 1998, 23(5): 367-369.

[6] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.

[7] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 2002, 298(5592): 399-402.

[8] Ding W, Wang Y Y, Gao S F, et al. Recent progress in low-loss hollow-core anti-resonant fibers and their applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(4): 1-12.

[9] 高寿飞, 汪滢莹, 王璞. 反谐振空芯光纤及气体拉曼激光技术的研究进展[J]. 中国激光, 2019, 46(5): 0508014.

    Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 2019, 46(5): 0508014.

[10] Smith C M, Venkataraman N, Gallagher M T, et al. Low-loss hollow-core silica/air photonic bandgap fibre[J]. Nature, 2003, 424(6949): 657-659.

[11] Mangan BJ, FarrL, LangfordA, et al. Low loss (1.7dB/km) hollow core photonic bandgap fiber[C]∥ Optical Fiber Communication Conference 2004, February 22, 2004, Los Angeles, California, United States. Washington, D.C. :OSA, 2004: PD24.

[12] Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244.

[13] Amezcua-Correa R, Broderick N G, Petrovich M N, et al. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation[J]. Optics Express, 2007, 15(26): 17577-17586.

[14] Petrovich MN, Baddela NK, Wheeler NV, et al. Development of low loss, wide bandwidth hollow core photonic bandgap fibers[C]∥Optical Fiber Communication Conference 2013, March 17-21, 2013, Anaheim, California, United States. Washington, D.C.: OSA, 2013: OTh1J. 3.

[15] Wheeler N V, Heidt A M, Baddela N K, et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber[J]. Optics Letters, 2014, 39(2): 295-298.

[16] Zhang X, Gao S F, Wang Y Y, et al. 7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss[J]. Optics Express, 2019, 27(8): 11608.

[17] Litchinitser N M, Abeeluck A K, Headley C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18): 1592-1594.

[18] Wang Y Y, Wheeler N V, Couny F, et al. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber[J]. Optics Letters, 2011, 36(5): 669-671.

[19] Pryamikov A D, Biriukov A S, Kosolapov A F, et al. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5μm[J]. Optics Express, 2011, 19(2): 1441-1448.

[20] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3--4μm spectral region[J]. Optics Express, 2012, 20(10): 11153-11158.

[21] Gao S F, Wang Y Y, Liu X L, et al. Bending loss characterization in nodeless hollow-core anti-resonant fiber[J]. Optics Express, 2016, 24(13): 14801-14811.

[22] Gao S F, Wang Y Y, Ding W, et al. Hollow-core conjoined-tube negative-curvature fibre with ultralow loss[J]. Nature Communications, 2018, 9(1): 2828.

[23] Bradley TD, Jasion GT, Hayes JR, et al. Antiresonant hollow core fibre with 0.65dB/km attenuation across the C and L telecommunication bands[C]∥45th European Conference on Optical Communication, Septemper 22-26, 2019 ,Dublin, Ireland. New York: IEEE, 2019.

[24] Russell P, Hölzer P, Chang W, et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nature Photonics, 2014, 8(4): 278-286.

[25] Gérôme F, Jamier R, Auguste J L, et al. Simplified hollow-core photonic crystal fiber[J]. Optics Letters, 2010, 35(8): 1157-1159.

[26] Couny F, Benabid F, Light P S. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 2007, 99(14): 143903.

[27] Benabid F, Bouwmans G, Knight J C, et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 2004, 93(12): 123903.

[28] Benabid F, Antonopoulos G, Knight J C, et al. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 2005, 95(21): 213903.

[29] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488-491.

[30] CounyF, Mangan BJ, Sokolov AV, et al. High power 55 watts CW Raman fiber-gas-laser[C]∥Conference on Lasers and Electro-Optics 2010, May 16-21, 2010, San Jose, California, United States. Washington, D.C.: OSA, 2010: CTuM3.

[31] Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 2014, 11(10): 105807.

[32] Gladyshev A V, Kolyadin A N, Kosolapov A F, et al. Efficient 1.9μm Raman generation in a hydrogen-filled hollow-core fibre[J]. Quantum Electronics, 2015, 45(9): 807-812.

[33] Gladyshev A V, Kolyadin A N, Kosolapov A F, et al. Low-threshold 1.9μm Raman generation in microstructured hydrogen-filled hollow-core revolver fibre with nested capillaries[J]. Laser Physics, 2017, 27(2): 025101.

[34] Li Z X, Huang W, Cui Y L, et al. High-efficiency, high peak-power, narrow linewidth 1.9μm fiber gas Raman amplifier[J]. Journal of Lightwave Technology, 2018, 36(17): 3700-3706.

[35] Wang Z F, Gu B, Chen Y B, et al. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source[J]. Applied Optics, 2017, 56(27): 7657-7661.

[36] Li Z X, Huang W, Cui Y L, et al. Efficient high power, narrow linewidth 1.9μm fiber hydrogen Raman amplifier[J]. Applied Optics, 2018, 57(14): 3902-3906.

[37] Benoit A, Beaudou B, Debord B, et al. High power Raman-converter based on H2-filled inhibited coupling HC-PCF[J]. Proceedings of SPIE, 2017, 1008: 100880H.

[38] 黄威, 崔宇龙, 李智贤, 等. 基于空芯光纤中氢气受激拉曼散射的1.7μm光纤激光光源研究[J]. 光学学报, 2020, 40(5): 0514001.

    Huang W, Cui Y L, Li Z X, et al. Research on 1.7μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 2020, 40(5): 0514001.

[39] Huang W, Li Z X, Cui Y L, et al. Efficient, watt-level, tunable 1.7μm fiber Raman laser in H2-filled hollow-core fibers[J]. Optics Letters, 2020, 45(2): 475-478.

[40] Gladyshev A V, Kosolapov A F, Khudyakov M M, et al. 4.4μm Raman laser based on hollow-core silica fibre[J]. Quantum Electronics, 2017, 47(5): 491-494.

[41] Gladyshev AV, Kosolapov AF, Astapovich MS, et al. Revolver hollow-core fibers and Raman fiber lasers[C]∥Optical Fiber Communication Conference 2018, March 11-15,2018 ,San Diego, California, United States. Washington, D.C.: OSA, 2018: M2J. 7.

[42] Astapovich M S, Gladyshev A V, Khudyakov M M, et al. 4.4μm Raman generation with an average power above 1 W in silica revolver fibre[J]. Quantum Electronics, 2018, 48(12): 1084-1088.

[43] Astapovich M S, Gladyshev A V, Khudyakov M M, et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 2019, 31(1): 78-81.

[44] Couny F, Benabid F, Roberts P J, et al. Generation and photonic guidance of multi-octave optical-frequency combs[J]. Science, 2007, 318(5853): 1118-1121.

[45] Mridha M K, Novoa D, Bauerschmidt S T, et al. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber[J]. Optics Letters, 2016, 41(12): 2811-2814.

[46] Gladyshev A V, Bufetov I A, Dianov E M, et al. 2.9, 3.3, and 3.5μm Raman lasers based on revolver hollow-core silica fiber filled by H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-8.

[47] Huang W, Cui Y L, Li Z X, et al. 1.56μm and 2.86μm Raman lasers based on gas-filled anti-resonance hollow-core fiber[J]. Chinese Optics Letters, 2019, 17(7): 071406.

[48] Cui Y L, Huang W, Li Z X, et al. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering[J]. Optics Express, 2019, 27(21): 30396-30404.

[49] 崔宇龙, 黄威, 周智越, 等. 基于空芯光子晶体光纤的单程高效氘气转动拉曼激光光源[J]. 光学学报, 2020, 40(2): 0214001.

    Cui Y L, Huang W, Zhou Z Y, et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 2020, 40(2): 0214001.

[50] Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5μm fiber gas Raman laser source with about 400kW of peak power and a 6.3GHz linewidth[J]. Optics Letters, 2016, 41(21): 5118-5121.

[51] 陈育斌, 顾博, 王泽锋, 等. 1.5μm光纤气体拉曼激光光源[J]. 光学学报, 2016, 36(5): 0506002.

    Chen Y B, Gu B, Wang Z F, et al. 1.5μm fiber gas Raman laser source[J]. Acta Optica Sinica, 2016, 36(5): 0506002.

[52] Chen Y B, Wang Z F, Li Z X, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5μm[J]. Optics Express, 2017, 25(17): 20944-20949.

[53] Li Z X, Huang W, Cui Y L, et al. 0.83 W, single-pass, 1.54μm gas Raman source generated in a CH4-filled hollow-core fiber operating at atmospheric pressure[J]. Optics Express, 2018, 26(10): 12522-12529.

[54] Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8μm[J]. Optics Letters, 2018, 43(19): 4671-4674.

[55] Cao L, Gao S F, Peng Z G, et al. High peak power 2.8μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 2018, 26(5): 5609-5615.

[56] 黄威, 李智贤, 崔宇龙, 等. 反共振空芯光纤中氘气受激拉曼散射实验研究[J]. 中国激光, 2020, 47(1): 0101001.

    Huang W, Li Z X, Cui Y L, et al. Experimental research on stimulated Raman scattering of deuterium gas in anti-resonance hollow-core fibers[J]. Chinese Journal of Lasers, 2020, 47(1): 0101001.

[57] Huang W, Cui Y L, Li Z X, et al. Diode-pumped single-pass tunable mid-infrared gas Raman source by methane-filled hollow-core fiber[J]. Laser Physics Letters, 2019, 16(8): 085107.

[58] Krupa K, Baudin K, Parriaux A, et al. Intense stimulated Raman scattering in CO2-filled hollow-core fibers[J]. Optics Letters, 2019, 44(21): 5318-5321.

[59] Edelstein S, Ishaaya A A. High-efficiency Raman conversion in SF6- and CF4-filled hollow-core photonic bandgap fibers[J]. Optics Letters, 2019, 44(23): 5856-5859.

[60] Huang W, Cui Y L, Li X Q, et al. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique[J]. Optics Express, 2019, 27(26): 37111-37121.

[61] Cui Y L, Zhou Z Y, Huang W, et al. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers[J]. Optics & Laser Technology, 2020, 121: 105794.

王泽锋, 黄威, 李智贤, 周智越, 崔宇龙, 李昊. 光纤气体激光光源研究进展及展望(Ⅰ): 基于受激拉曼散射[J]. 中国激光, 2021, 48(4): 0401008. Zefeng Wang, Wei Huang, Zhixian Li, Zhiyue Zhou, Yulong Cui, Hao Li. Progress and Prospects of Fiber Gas Laser Sources (Ⅰ) :Based on Stimulated Raman Scattering[J]. Chinese Journal of Lasers, 2021, 48(4): 0401008.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!