中国激光, 2019, 46 (1): 0102010, 网络出版: 2019-01-27   

Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能 下载: 956次

Microstructure and Friction and Wear Resistance of Laser Cladding Composite Coating on Ti811 Surface
作者单位
1 天津工业大学机械工程学院, 天津 300387
2 天津市现代机电装备技术重点实验室, 天津 300387
3 中国民航大学工程技术训练中心, 天津 300300
引用该论文

刘亚楠, 孙荣禄, 牛伟, 张天刚, 谭金花. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能[J]. 中国激光, 2019, 46(1): 0102010.

Liu Yanan, Sun Ronglu, Niu Wei, Zhang Tiangang, Tan Jinhua. Microstructure and Friction and Wear Resistance of Laser Cladding Composite Coating on Ti811 Surface[J]. Chinese Journal of Lasers, 2019, 46(1): 0102010.

参考文献

[1] 赵永庆, 朱康英, 李佐臣, 等. Ti811合金的热稳定性能[J]. 稀有金属材料与工程, 1997, 26(3): 35-39.

    Zhao Y Q, Zhu K Y, Li Z C, et al. Thermal stability of the Ti811 alloy[J]. Rare Metal Materials and Engineering, 1997, 26(3): 35-39.

[2] 赵永庆. Ti-8Al-1Mo-1V合金[J]. 钛工业进展, 1994( 6): 11- 12.

    Zhao YQ. Ti-8Al-1Mo-1V alloy[J]. Titanium Industry Progress, 1994( 6): 11- 12.

[3] Zhang X H, Liu D X. Influence of surface coating on Ti811 alloy resistance to fretting fatigue at elevated temperature[J]. Rare Metals, 2009, 28(3): 266-271.

[4] Wendt U, Settegast S, Grodrian I U. Laser alloying of aluminum with titanium wire[J]. Journal of Materials Science Letters, 2003, 22(19): 1319-1322.

[5] Weng F, Yu H J, Chen C Z, et al. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V[J]. Materials & Design, 2015, 80: 174-181.

[6] 孙荣禄, 杨德庄, 郭立新, 等. 激光工艺参数对钛合金表面NiCrBSi合金熔覆层组织及硬度的影响[J]. 光学技术, 2001, 27(1): 34-36, 38.

    Sun R L, Yang D Z, Guo L X, et al. Effect of laser parameter on microstructure and microhardness of NiCrBSi laser cladding layer[J]. Optical Technique, 2001, 27(1): 34-36, 38.

[7] Wu Y, Wang A H, Zhang Z, et al. Laser alloying of Ti-Si compound coating on Ti-6Al-4V alloy for the improvement of bioactivity[J]. Applied Surface Science, 2014, 305(30): 16-23.

[8] 孙荣禄, 牛伟, 雷贻文, 等. 钛合金表面激光熔覆TiB2-TiC/Ni复合涂层的真空摩擦磨损性能[J]. 材料热处理学报, 2012, 33(5): 131-135.

    Sun R L, Niu W, Lei Y W, et al. Tribological properties in vacuum of TiB2-TiC/Ni laser clad layer on titanium alloy substrate[J]. Transactions of Materials and Heat Treatment, 2012, 33(5): 131-135.

[9] 张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1): 0102002.

    Zhang T G, Sun R L. Microstructure and properties of nano-Ti3Al laser cladding layer prepared Ti811 alloy surface[J]. Chinese Journal of Lasers, 2018, 45(1): 0102002.

[10] Zhai Y J, Liu X B, Qiao S J, et al. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy[J]. Optics & Laser Technology, 2017, 89: 97-107.

[11] 张光耀, 王成磊, 高原, 等. 稀土La2O3对6063Al激光熔覆Ni基熔覆层微观结构的影响[J]. 中国激光, 2014, 41(11): 1103001.

    Zhang G Y, Wang C L, Gao Y, et al. Effect of are earth La2O3 on the microstructure of laser cladding Ni-based coatings on 6063 Al alloys[J]. Chinese Journal of Lasers, 2014, 41(11): 1103001.

[12] Zhou S F, Zeng X Y. Growth characteristics and mechanism of carbides precipitated in WC-Fe composite coatings by laser induction hybrid rapid cladding[J]. Journal of Alloys and Compounds, 2010, 505(2): 685-691.

[13] Schwendner K I, Banerjee R, Collins P C, et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia, 2001, 45(10): 1123-1129.

[14] Masanta M, Shariff S M, Roy Choudhury A. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2-TiC-Al2O3 composite coating developed by SHS and laser cladding[J]. Materials Science and Engineering A, 2011, 528(16/17): 5327-5335.

[15] Xuan H F, Wang Q Y, Bai S L, et al. A study on microstructure and flame erosion mechanism of a graded Ni-Cr-B-Si coating prepared by laser cladding[J]. Surface and Coatings Technology, 2014, 244: 203-209.

[16] Weng F, Yu H J, Chen C Z, et al. Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42+TiN mixed powders[J]. Journal of Alloys and Compounds, 2016, 686: 74-81.

[17] Li P T, Wu Y Y, Liu X F. Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method[J]. Materials Research Bulletin, 2013, 48(6): 2044-2048.

[18] 翁飞. 钛合金表面陶瓷强化金属基复合激光熔覆层的微观组织与耐磨性能研究[D]. 济南: 山东大学, 2017.

    WengF. Microstructure and wear property of ceramics reinforced metal matrix composite laser cladding coatings on titanium alloy[D]. Jinan: Shandong University, 2017.

[19] Sorrell C, Beratan H R, Bradt R C, et al. Directional solidification of (Ti,Zr) carbide-(Ti,Zr) diboride eutectics[J]. Journal of the American Ceramic Society, 2006, 67(3): 190-194.

[20] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7): 1987-1995.

[21] 杨庆祥, 赵斌, 员霄, 等. 纳米Y2O3对过共晶Fe-Cr-C堆焊合金表面微观组织与耐磨性的影响[J]. 表面技术, 2015, 44(4): 42-47, 53.

    Yang Q X, Zhao B, Yun X, et al. Influence of nano-Y2O3 on microstructure and wear resistance of Fe-Cr-C hardfacing alloy surface[J]. Surface Technology, 2015, 44(4): 42-47, 53.

[22] Shi Z J, Liu S, Gao Y K, et al. Mechanism of Y2O3 as heterogeneous nucleus of TiC in hypereutectic Fe-CrC-Ti-Y2O3 coating: first principle calculation and experiment research[J]. Materials Today Communications, 2017, 13: 80-91.

[23] Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806.

[24] 朱春城, 曲伟, 张幸红, 等. TiC-TiB2复合材料的研究进展[J]. 材料导报, 2003, 17(1): 48-50, 54.

    Zhu C C, Qu W, Zhang X H, et al. Progress in research on TiC-TiB2 composites[J]. Materials Review, 2003, 17(1): 48-50, 54.

[25] 王盈, 邹兵林, 曹学强. Al-Ti-B4C体系熔体内燃烧合成TiC-TiB2颗粒局部增强钢基复合材料[J]. 金属学报, 2014, 50(3): 367-372.

    Wang Y, Zou B L, Cao X Q. Combustion synthesis of TiC-TiB2 particulates locally reinforced steel matrix composites from an Al-Ti-B4C system during casting[J]. Acta Metallurgica Sinica, 2014, 50(3): 367-372.

[26] Chen T, Liu D F, Wu F, et al. Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding[J]. Materials, 2018, 11(1): 58.

[27] 孙荣禄, 杨贤金. 激光熔覆原位合成TiC-TiB2/Ni基金属陶瓷涂层的组织和摩擦磨损性能[J]. 硅酸盐学报, 2003, 31(12): 1221-1224.

    Sun R L, Yang X J. Microstructure, friction and wear properties of in situ synthesized TiC-TiB2/Ni-based metallic ceramic coating by laser cladding[J]. Journal of the Chinese Ceramic Society, 2003, 31(12): 1221-1224.

[28] 王舒, 程序, 田象军, 等. TiC添加量对激光增材制造MC碳化物增强Inconel625复合材料组织及性能的影响[J]. 中国激光, 2018, 45(6): 0602002.

    Wang S, Cheng X, Tian X J, et al. Effect of TiC addition on microstructures and properties of MC carbide reinforced Inconel625 composites by laser additive manufacturing[J]. Chinese Journal of Lasers, 2018, 45(6): 0602002.

刘亚楠, 孙荣禄, 牛伟, 张天刚, 谭金花. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能[J]. 中国激光, 2019, 46(1): 0102010. Liu Yanan, Sun Ronglu, Niu Wei, Zhang Tiangang, Tan Jinhua. Microstructure and Friction and Wear Resistance of Laser Cladding Composite Coating on Ti811 Surface[J]. Chinese Journal of Lasers, 2019, 46(1): 0102010.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!