激光与光电子学进展, 2020, 57 (13): 130001, 网络出版: 2020-07-09   

结型有机光电探测器的研究进展 下载: 1018次封面文章特邀综述

Research Progress in Junction Type Organic Photodetectors
作者单位
太原理工大学物理与光电工程学院,山西 太原 030024
引用该论文

赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. 结型有机光电探测器的研究进展[J]. 激光与光电子学进展, 2020, 57(13): 130001.

赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. Research Progress in Junction Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130001.

参考文献

[1] . Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.

[2] , 等. 无机紫外光电探测器材料研究进展[J]. 中国材料进展, 2019, 38(9): 875-886.

    , et al. Progress in inorganic ultraviolet photoelectric materials[J]. Materials China, 2019, 38(9): 875-886.

[3] , et al. High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT∶PSS heterostructures integrated on human hair[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24459-24467.

[4] . LamA D K T, et al. Visible photodetectors based on organic-inorganic hybrids using electrostatic spraying technology[J]. Smart Science, 2013, 1(2): 108-112.

[5] , 等. InP基近红外单光子雪崩光电探测器阵列[J]. 激光与光电子学进展, 2019, 56(22): 220001.

    , et al. Indium phosphide-based near-infrared single photon avalanche photodiode detector arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001.

[6] , 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12): 120701.

    , et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701.

[7] , et al. Organic photoresponse materials and devices[J]. Chemical Society Reviews, 2012, 41(5): 1754-1808.

[8] . 有机半导体器件的现状及发展趋势[J]. 微纳电子技术, 2010, 47(8): 470-474.

    . Status and development trend of organic semiconductor devices[J]. Micronanoelectronic Technology, 2010, 47(8): 470-474.

[9] , et al. Organic materials for photovoltaic applications: review and mechanism[J]. Synthetic Metals, 2014, 190: 20-26.

[10] . Review of photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2165-2175.

[11] 黄维, 密保秀, 高志强. 有机电子学[M]. 北京: 科学出版社. 2011.

    HuangW, Mi BX, Gao ZQ. Organic electronics[M]. Beijing: Science Press. 2011.

[12] ShirakawaH, Louis EJ, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,( CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977( 16): 578- 580.

[13] . 有机半导体材料与器件研究领域的若干科学问题[J]. 大学化学, 2007, 22(1): 9-13.

    . Some scientific problems in the field of organic semiconductor materials and devices[J]. University Chemistry, 2007, 22(1): 9-13.

[14] , 等. 新型传感材料与器件研究进展[J]. 稀有金属, 2019, 43(1): 1-24.

    , et al. Research progress in advanced sensing materials and related devices[J]. Chinese Journal of Rare Metals, 2019, 43(1): 1-24.

[15] . Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.

[16] . An air-stable ultraviolet photodetector based on mesoporous TiO2/spiro-OMeTAD[J]. Journal of Materials Chemistry C, 2017, 5(40): 10543-10548.

[17] , et al. Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity[J]. Journal of Physics D: Applied Physics, 2016, 49(7): 075102.

[18] , et al. A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications[J]. Applied Physics Letters, 2008, 93(20): 203305.

[19] . Ho P K H, et al. All-solution based device engineering of multilayer polymeric photodiodes: minimizing dark current[J]. Applied Physics Letters, 2009, 94(17): 173303.

[20] , et al. n-Type organic semiconductors in organic electronics[J]. Advanced Materials, 2010, 22(34): 3876-3892.

[21] , 等. 酞菁铜的性能和应用研究进展[J]. 材料导报, 2000, 14(10): 51-55.

    , et al. A review of properties and application of copper phthalocyanine[J]. Materials Review, 2000, 14(10): 51-55.

[22] . Efficient, high-bandwidth organic multilayer photodetectors[J]. Applied Physics Letters, 2000, 76(26): 3855-3857.

[23] . Lateral organic semiconductor photodetector. Part I: use of an insulating layer for low dark current[J]. IEEE Transactions on Electron Devices, 2014, 61(10): 3465-3471.

[24] . Photoresponse properties of a high-speed organic photodetector based on copper-phthalocyanine under red light illumination[J]. IEEE Photonics Technology Letters, 2006, 18(24): 2662-2664.

[25] . Frequency response properties of organic photo-detectors as opto-electrical conversion devices[J]. Journal of Display Technology, 2006, 2(2): 170-174.

[26] , et al. High speed responsive near infrared photodetector focusing on 808 nm radiation using hexadecafluoro-copper-phthalocyanine as the acceptor[J]. Organic Electronics, 2011, 12(1): 34-38.

[27] , et al. High response organic ultraviolet photodetector based on blend of 4, 4', 4″-tri-( 2-methylphenyl phenylamino) triphenylaine and tris-( 8-hydroxyquinoline) gallium[J]. Applied Physics Letters, 2008, 93(10): 103309.

[28] , et al. Double wavelength ultraviolet light sensitive organic photodetector[J]. Applied Physics Letters, 2009, 95(25): 253308.

[29] , et al. Visible-blind ultraviolet sensitive photodiode with high responsivity and long term stability[J]. Applied Physics Letters, 2010, 97(2): 023306.

[30] , et al. High response deep ultraviolet organic photodetector with spectrum peak focused on 280 nm[J]. Applied Physics Letters, 2010, 96(9): 093302.

[31] , et al. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm[J]. Applied Physics Letters, 2011, 99(2): 023305.

[32] , et al. High response organic ultraviolet photodetectors based on 4, 7-diphenyl-1, 10-phenanthroline[J]. Solar Energy Materials and Solar Cells, 2012, 96: 29-32.

[33] , et al. High performance organic ultraviolet photodetectors based on novel phosphorescent Cu(I) complexes[J]. Solid-State Electronics, 2013, 89: 68-71.

[34] , et al. Organic deep ultraviolet photodetector with response peak focusing on 270 nm using the acceptor BAlq[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1835-1837.

[35] , et al. High response organic deep ultraviolet photodetector with PEDOT∶PSS anode[J]. Optics Letters, 2011, 36(10): 1821-1823.

[36] . Choy W C H, Sha W E I, et al. Photovoltaic mode ultraviolet organic photodetectors with high on/off ratio and fast response[J]. Advanced Optical Materials, 2014, 2(11): 1082-1089.

[37] , et al. High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter[J]. Applied Physics Letters, 2015, 107(4): 043303.

[38] , et al. Highly efficient visible-blind organic ultraviolet photodetectors[J]. Advanced Materials, 2005, 17(20): 2489-2493.

[39] . High response organic visible-blind ultraviolet detector[J]. Applied Physics Letters, 2007, 91(9): 093516.

[40] , et al. Ultraviolet photodetectors with narrow-band spectral response using TAPC donor[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3583-3586.

[41] , et al. Structural spectral response tuning in organic deep ultraviolet photodetectors[J]. Solid-State Electronics, 2013, 80: 14-18.

[42] , et al. Ultra-wide bandgap organic acceptor material and its application in organic UV photodetector[J]. Synthetic Metals, 2016, 219: 20-25.

[43] , et al. Green-sensitive organic photodetectors with high sensitivity and spectral selectivity using subphthalocyanine derivatives[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13089-13095.

[44] , et al. Low dark current small molecule organic photodetectors with selective response to green light[J]. Applied Physics Letters, 2013, 103(4): 043305.

[45] , et al. A high performance semitransparent organic photodetector with green color selectivity[J]. Applied Physics Letters, 2014, 105(21): 213301.

[46] , et al. Low dark current inverted organic photodetectors employing MoOx: Al cathode interlayer[J]. Organic Electronics, 2015, 24: 176-181.

[47] , et al. Fast and air stable near-infrared organic detector based on squaraine dyes[J]. Organic Electronics, 2009, 10(7): 1314-1319.

[48] , et al. High detectivity squaraine-based near infrared photodetector with nA/cm 2 dark current[J]. Applied Physics Letters, 2011, 98(7): 073303.

[49] , et al. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers[J]. Journal of Materials Chemistry C, 2013, 1(22): 3532-3543.

[50] , et al. Narrow band green organic photodiodes for imaging[J]. Organic Electronics, 2014, 15(11): 2903-2911.

[51] , et al. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules[J]. Advanced Materials, 2014, 26(39): 6773-6777.

[52] , et al. Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors[J]. Applied Physics Letters, 2007, 91(19): 193510.

[53] , et al. Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components[J]. Journal of Lightwave Technology, 2008, 26(7): 816-823.

[54] . Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Applied Physics Letters, 2000, 77(14): 2255-2257.

[55] , et al. High sensitivity organic photodiodes with low dark currents and increased lifetimes[J]. Organic Electronics, 2008, 9(3): 369-376.

[56] , et al. Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes[J]. Organic Electronics, 2012, 13(11): 2727-2732.

[57] , et al. Inverted organic photodetectors with ZnO electron-collecting buffer layers and polymer bulk heterojunction active layers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 130-136.

[58] , et al. Enhanced photocurrent in organic photodetectors by the tunneling effect of a hafnium oxide thin film as an electron blocking layer[J]. RSC Advances, 2019, 9(51): 29993-29997.

[59] , et al. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells[J]. Physical Review B, 2011, 83(16): 165311.

[60] , et al. Efficient indium-tin-oxide (ITO) free top-absorbing organic photodetector with highly transparent polymer top electrode[J]. Organic Electronics, 2011, 12(10): 1669-1673.

[61] , et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: comparison with standard device architecture[J]. Organic Electronics, 2013, 14(10): 2484-2490.

[62] , et al. Transparent conductive electrodes from graphene/PEDOT∶PSS hybrid inks for ultrathin organic photodetectors[J]. Advanced Materials, 2015, 27(4): 669-675.

[63] , et al. Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode[J]. Organic Electronics, 2015, 20: 103-111.

[64] , et al. Carbon nanotube woven textile photodetector[J]. Physical Review Materials, 2018, 2: 015201.

[65] . Aligned nanofibers as an interfacial layer for achieving high-detectivity and fast-response organic photodetectors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7032-7037.

[66] , et al. High sensitivity and fast response Sol-gel ZnO electrode buffer layer based organic photodetectors with large linear dynamic range at low operating voltage[J]. Organic Electronics, 2018, 56: 51-58.

[67] , et al. Work function tuning for high-performance solution-processed organic photodetectors with inverted structure[J]. Advanced Materials, 2013, 25(45): 6534-6538.

[68] , et al. P-doped organic semiconductor: potential replacement for PEDOT∶PSS in organic photodetectors[J]. Applied Physics Letters, 2016, 109(7): 073301.

[69] , et al. Thick junction broadband organic photodiodes[J]. Laser & Photonics Reviews, 2014, 8(6): 924-932.

[70] , et al. High-performance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12937-12946.

[71] , et al. Insights into the failure mechanisms of organic photodetectors[J]. Advanced Electronic Materials, 2018, 4(2): 1700526.

[72] , et al. Dark current reduction strategies using edge-on aligned donor polymers for high detectivity and responsivity organic photodetectors[J]. Polymer Chemistry, 2017, 8(23): 3612-3621.

[73] , et al. Monitoring fluorescent calcium signals in neural cells with organic photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(29): 9049-9056.

[74] , et al. Plastic near-infrared photodetectors utilizing low band gap polymer[J]. Advanced Materials, 2007, 19(22): 3979-3983.

[75] . Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nature Communications, 2015, 6: 6343.

[76] , et al. Improving spray coated organic photodetectors performance by using 1, 8-diiodooctane as processing additive[J]. Organic Electronics, 2018, 54: 21-26.

[77] , et al. Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1. 1 μm[J]. Journal of Materials Chemistry C, 2018, 6(43): 11645-11650.

[78] , et al. Flexible image sensor array with bulk heterojunction organic photodiode[J]. Applied Physics Letters, 2008, 92(21): 213303.

[79] , et al. Realization of high detectivity organic ultraviolet photodetectors by modifying polymer active layer[J]. Organic Electronics, 2014, 15(11): 3000-3005.

[80] , et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[81] , et al. Semiconducting polymer photodetectors with electron and hole blocking layers: high detectivity in the near-infrared[J]. Sensors, 2010, 10(7): 6488-6496.

[82] . Near infrared organic photodetector utilizing a double electron blocking layer[J]. Optics Express, 2016, 24(22): 25308-25316.

[83] , et al. New application of AIEgens realized in photodetectors: reduced work function of transparent electrodes and much improved performance[J]. Materials Chemistry Frontiers, 2018, 2(2): 264-269.

[84] , et al. A planar organic near infrared light detector based on bulk heterojunction of a heteroquaterphenoquinone and poly[2-methoxy-5-( 2'-ethyl-hexyloxy)-1, 4-phenylene vinylene][J]. Journal of Applied Physics, 2008, 104(11): 114508.

[85] . Ho P K H, Friend R H, et al. The dependence of device dark current on the active-layer morphology of solution-processed organic photodetectors[J]. Advanced Functional Materials, 2010, 20(22): 3895-3903.

[86] , et al. Spectral response tuning and realization of quasi-solar-blind detection in organic ultraviolet photodetectors[J]. Organic Electronics, 2011, 12(1): 70-77.

[87] , et al. Rigid, conjugated macrocycles for high performance organic photodetectors[J]. Journal of the American Chemical Society, 2016, 138(50): 16426-16431.

[88] . Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427.

[89] , et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376(6540): 498-500.

[90] . Brenner T J K, et al. Effects of layer thickness and annealing of PEDOT∶PSS layers in organic photodetectors[J]. Macromolecules, 2009, 42(17): 6741-6747.

[91] . All ink-jet printed polyfluorene photosensor for high illuminance detection[J]. Organic Electronics, 2011, 12(4): 682-685.

[92] , et al. High-detectivity all-polymer photodetectors with spectral response from 300 to 1100 nm[J]. Macromolecular Chemistry and Physics, 2016, 217(15): 1683-1689.

[93] , et al. Effect of compositions of acceptor polymers on dark current and photocurrent of all-polymer bulk-heterojunction photodetectors[J]. Polymer, 2017, 114: 173-179.

[94] . O'Brien S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.

[95] , et al. Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62(6): 585-587.

[96] , et al. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection[J]. Lab on a Chip, 2008, 8(5): 794-800.

[97] , et al. Organic photodetector arrays with indium tin oxide electrodes patterned using directly transferred metal masks[J]. Applied Physics Letters, 2009, 94(4): 043313.

[98] , et al. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system[J]. Journal of Applied Physics, 2010, 108(3): 034502.

[99] . An integrated organic passive pixel sensor[J]. Organic Electronics, 2011, 12(11): 1822-1825.

[100] . Fast response organic photodetectors with high detectivity based on rubrene and C60[J]. Organic Electronics, 2013, 14(11): 3019-3023.

[101] , et al. Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response[J]. ACS Photonics, 2019, 6(6): 1393-1399.

[102] , et al. Porphyrin-tape/C60 organic photodetectors with 6.5% external quantum efficiency in the near infrared[J]. Advanced Materials, 2010, 22(25): 2780-2783.

[103] . Fang, Su Z S, et al. Aluminum-doped zinc oxide as anode for organic near-infrared photodetectors[J]. Journal of Physics D: Applied Physics, 2014, 47(33): 335104.

[104] , et al. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction[J]. Organic Electronics, 2014, 15(10): 2367-2371.

[105] , et al. CuPc/C60 heterojunction photodetector with near-infrared spectral response[J]. Materials Letters, 2017, 201: 137-139.

[106] . Tandem organic photodetectors with tunable, broadband response[J]. Applied Physics Letters, 2012, 101(22): 223301.

[107] , et al. Organic ultraviolet photodetector based on phosphorescent material[J]. Optics Letters, 2013, 38(19): 3823-3826.

[108] . High efficiency organic multilayer photodetectors based on singlet exciton fission[J]. Applied Physics Letters, 2009, 95(3): 033301.

[109] , et al. Plasmon-induced sub-bandgap photodetection with organic Schottky diodes[J]. Advanced Functional Materials, 2016, 26(31): 5741-5747.

[110] , et al. Remarkably enhanced red-NIR broad spectral absorption via gold nanoparticles: applications for organic photosensitive diodes[J]. Nanoscale, 2015, 7(34): 14422-14433.

[111] , et al. Enhanced photoresponse in metasurface-integrated organic photodetectors[J]. Nano Letters, 2018, 18(6): 3362-3367.

[112] , 等. 钙钛矿光电探测器的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010001.

    , et al. Research progress in perovskite photodetectors[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010001.

[113] , 等. 二维层状钙钛矿材料及其应用研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070002.

    , et al. Research progress of two-dimensional layered perovskite materials and their applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002.

[114] , et al. Nanodevices: record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 2019, 29(2): 1970012.

[115] , et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region[J]. Advanced Functional Materials, 2017, 27(42): 1703953.

[116] , et al. Organic membrane photonic integrated circuits (OMPICs)[J]. Optics Express, 2017, 25(16): 18537.

[117] , et al. Organic semiconductors: fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 2070015.

[118] , et al. Standing wave spectrometer with semi-transparent organic detector[J]. Journal of Materials Chemistry C, 2018, 6(42): 11457-11464.

[119] , et al. Organic photodiodes from homochiral l-proline derived squaraine compounds with strong circular dichroism[J]. Physical Chemistry Chemical Physics, 2017, 19(10): 6996-7008.

[120] , et al. Tellurophene-based random copolymers for high responsivity and detectivity photodetectors[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1917-1924.

[121] , et al. Research progress in organic photomultiplication photodetectors[J]. Nanomaterials, 2018, 8(9): 713.

[122] , 等. 有机光电倍增探测器研究进展[J]. 激光与光电子学进展, 2018, 55(7): 070001.

    , et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070001.

[123] , et al. Photomultiplication type organic photodetectors based on electron tunneling injection[J]. Nanoscale, 2020, 12(2): 1091-1099.

[124] , et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives[J]. Advanced Materials, 2009, 21(6): 683-687.

[125] , et al. Tuning the spectral response of ultraviolet organic-inorganic hybrid photodetectors via charge trapping and charge collection narrowing[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 11273-11284.

[126] , et al. Efficient hybrid tandem solar cells based on optical reinforcement of colloidal quantum dots with organic bulk heterojunctions[J]. Advanced Energy Materials, 2020, 10(7): 1903294.

[127] . Broadband hybrid organic/CuInSe2 quantum dot photodetectors[J]. Journal of Materials Chemistry C, 2018, 6(10): 2573-2579.

[128] , et al. Organic-inorganic hybrid nanocomposite for enhanced photo-sensing of PFO-DBT∶MEH-PPV∶PC71BM blend-based photodetector[J]. Journal of Nanoparticle Research, 2015, 17(9): 372.

[129] , et al. Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes[J]. Applied Physics Letters, 2008, 92(23): 233301.

[130] , et al. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids[J]. Scripta Materialia, 2010, 63(6): 653-656.

[131] , et al. Ultraviolet detector based on TiO2 nanowire array-polymer hybrids with low dark current[J]. Journal of Alloys and Compounds, 2015, 618: 233-235.

[132] , et al. ZnO/poly(9, 9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector[J]. Applied Physics Letters, 2008, 93(15): 153309.

[133] , et al. Efficient photodetection at IR wavelengths by incorporation of PbSe-carbon-nanotube conjugates in a polymeric nanocomposite[J]. Advanced Materials, 2007, 19(2): 232-236.

[134] , et al. Ultrasensitive organic-modulated CsPbBr3 quantum dot photodetectors via fast interfacial charge transfer[J]. Advanced Materials Interfaces, 2020, 7: 1901741.

赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. 结型有机光电探测器的研究进展[J]. 激光与光电子学进展, 2020, 57(13): 130001. 赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. Research Progress in Junction Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!