激光与光电子学进展, 2020, 57 (13): 130001, 网络出版: 2020-07-09   

结型有机光电探测器的研究进展 下载: 1018次封面文章特邀综述

Research Progress in Junction Type Organic Photodetectors
作者单位
太原理工大学物理与光电工程学院,山西 太原 030024
摘要
基于光生伏特原理的结型有机光电探测器(OPDs)被广泛研究。首先介绍了结型OPDs的三种主要结构及其原理,包含了平面异质结、体异质结和平面-体复合异质结,并介绍了结型OPDs的基本性能参数。基于构成异质结的半导体材料进行分类,分别综述了基于双有机小分子、聚合物-有机小分子、双聚合物等类型的异质结型OPDs在近年来的研究进展。此外,介绍了在对具有平直结构的结型OPDs的性能改善方面所采取的一些典型方法,并对结型OPDs的未来发展方向进行了展望。
Abstract
Junction type organic photodetectors (OPDs) based on the photovoltaic principle have been widely studied. In this paper, we first introduce the principle of different device structures of junction type OPDs, including planar heterojunction, bulk heterojunction, and plane-bulk hybrid heterojunction. Next, the characteristic parameters of junction type OPDs are briefly introduced. According to the different types of heterojunction materials, junction type OPDs can be categorized into dual organic small molecules, polymer-organic small molecules, dual polymers, etc., and the corresponding research progresses are reviewed. Typical methods for improving the performances of the junction type OPDs with the planar configuration are introduced as well. Finally, the future development of junction type OPDs is prospected.
参考文献

[1] . Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of Applied Physics, 2003, 93(7): 3693-3723.

[2] , 等. 无机紫外光电探测器材料研究进展[J]. 中国材料进展, 2019, 38(9): 875-886.

    , et al. Progress in inorganic ultraviolet photoelectric materials[J]. Materials China, 2019, 38(9): 875-886.

[3] , et al. High-performance flexible ultraviolet photodetectors based on AZO/ZnO/PVK/PEDOT∶PSS heterostructures integrated on human hair[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24459-24467.

[4] . LamA D K T, et al. Visible photodetectors based on organic-inorganic hybrids using electrostatic spraying technology[J]. Smart Science, 2013, 1(2): 108-112.

[5] , 等. InP基近红外单光子雪崩光电探测器阵列[J]. 激光与光电子学进展, 2019, 56(22): 220001.

    , et al. Indium phosphide-based near-infrared single photon avalanche photodiode detector arrays[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220001.

[6] , 等. 具有变革性特征的红外光电探测器[J]. 物理学报, 2019, 68(12): 120701.

    , et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 120701.

[7] , et al. Organic photoresponse materials and devices[J]. Chemical Society Reviews, 2012, 41(5): 1754-1808.

[8] . 有机半导体器件的现状及发展趋势[J]. 微纳电子技术, 2010, 47(8): 470-474.

    . Status and development trend of organic semiconductor devices[J]. Micronanoelectronic Technology, 2010, 47(8): 470-474.

[9] , et al. Organic materials for photovoltaic applications: review and mechanism[J]. Synthetic Metals, 2014, 190: 20-26.

[10] . Review of photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2165-2175.

[11] 黄维, 密保秀, 高志强. 有机电子学[M]. 北京: 科学出版社. 2011.

    HuangW, Mi BX, Gao ZQ. Organic electronics[M]. Beijing: Science Press. 2011.

[12] ShirakawaH, Louis EJ, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,( CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977( 16): 578- 580.

[13] . 有机半导体材料与器件研究领域的若干科学问题[J]. 大学化学, 2007, 22(1): 9-13.

    . Some scientific problems in the field of organic semiconductor materials and devices[J]. University Chemistry, 2007, 22(1): 9-13.

[14] , 等. 新型传感材料与器件研究进展[J]. 稀有金属, 2019, 43(1): 1-24.

    , et al. Research progress in advanced sensing materials and related devices[J]. Chinese Journal of Rare Metals, 2019, 43(1): 1-24.

[15] . Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors[J]. Applied Physics Letters, 2002, 81(20): 3885-3887.

[16] . An air-stable ultraviolet photodetector based on mesoporous TiO2/spiro-OMeTAD[J]. Journal of Materials Chemistry C, 2017, 5(40): 10543-10548.

[17] , et al. Effect of organic electron blocking layers on the performance of organic photodetectors with high ultraviolet detectivity[J]. Journal of Physics D: Applied Physics, 2016, 49(7): 075102.

[18] , et al. A polymer/fullerene based photodetector with extremely low dark current for X-ray medical imaging applications[J]. Applied Physics Letters, 2008, 93(20): 203305.

[19] . Ho P K H, et al. All-solution based device engineering of multilayer polymeric photodiodes: minimizing dark current[J]. Applied Physics Letters, 2009, 94(17): 173303.

[20] , et al. n-Type organic semiconductors in organic electronics[J]. Advanced Materials, 2010, 22(34): 3876-3892.

[21] , 等. 酞菁铜的性能和应用研究进展[J]. 材料导报, 2000, 14(10): 51-55.

    , et al. A review of properties and application of copper phthalocyanine[J]. Materials Review, 2000, 14(10): 51-55.

[22] . Efficient, high-bandwidth organic multilayer photodetectors[J]. Applied Physics Letters, 2000, 76(26): 3855-3857.

[23] . Lateral organic semiconductor photodetector. Part I: use of an insulating layer for low dark current[J]. IEEE Transactions on Electron Devices, 2014, 61(10): 3465-3471.

[24] . Photoresponse properties of a high-speed organic photodetector based on copper-phthalocyanine under red light illumination[J]. IEEE Photonics Technology Letters, 2006, 18(24): 2662-2664.

[25] . Frequency response properties of organic photo-detectors as opto-electrical conversion devices[J]. Journal of Display Technology, 2006, 2(2): 170-174.

[26] , et al. High speed responsive near infrared photodetector focusing on 808 nm radiation using hexadecafluoro-copper-phthalocyanine as the acceptor[J]. Organic Electronics, 2011, 12(1): 34-38.

[27] , et al. High response organic ultraviolet photodetector based on blend of 4, 4', 4″-tri-( 2-methylphenyl phenylamino) triphenylaine and tris-( 8-hydroxyquinoline) gallium[J]. Applied Physics Letters, 2008, 93(10): 103309.

[28] , et al. Double wavelength ultraviolet light sensitive organic photodetector[J]. Applied Physics Letters, 2009, 95(25): 253308.

[29] , et al. Visible-blind ultraviolet sensitive photodiode with high responsivity and long term stability[J]. Applied Physics Letters, 2010, 97(2): 023306.

[30] , et al. High response deep ultraviolet organic photodetector with spectrum peak focused on 280 nm[J]. Applied Physics Letters, 2010, 96(9): 093302.

[31] , et al. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm[J]. Applied Physics Letters, 2011, 99(2): 023305.

[32] , et al. High response organic ultraviolet photodetectors based on 4, 7-diphenyl-1, 10-phenanthroline[J]. Solar Energy Materials and Solar Cells, 2012, 96: 29-32.

[33] , et al. High performance organic ultraviolet photodetectors based on novel phosphorescent Cu(I) complexes[J]. Solid-State Electronics, 2013, 89: 68-71.

[34] , et al. Organic deep ultraviolet photodetector with response peak focusing on 270 nm using the acceptor BAlq[J]. IEEE Photonics Technology Letters, 2011, 23(23): 1835-1837.

[35] , et al. High response organic deep ultraviolet photodetector with PEDOT∶PSS anode[J]. Optics Letters, 2011, 36(10): 1821-1823.

[36] . Choy W C H, Sha W E I, et al. Photovoltaic mode ultraviolet organic photodetectors with high on/off ratio and fast response[J]. Advanced Optical Materials, 2014, 2(11): 1082-1089.

[37] , et al. High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter[J]. Applied Physics Letters, 2015, 107(4): 043303.

[38] , et al. Highly efficient visible-blind organic ultraviolet photodetectors[J]. Advanced Materials, 2005, 17(20): 2489-2493.

[39] . High response organic visible-blind ultraviolet detector[J]. Applied Physics Letters, 2007, 91(9): 093516.

[40] , et al. Ultraviolet photodetectors with narrow-band spectral response using TAPC donor[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3583-3586.

[41] , et al. Structural spectral response tuning in organic deep ultraviolet photodetectors[J]. Solid-State Electronics, 2013, 80: 14-18.

[42] , et al. Ultra-wide bandgap organic acceptor material and its application in organic UV photodetector[J]. Synthetic Metals, 2016, 219: 20-25.

[43] , et al. Green-sensitive organic photodetectors with high sensitivity and spectral selectivity using subphthalocyanine derivatives[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13089-13095.

[44] , et al. Low dark current small molecule organic photodetectors with selective response to green light[J]. Applied Physics Letters, 2013, 103(4): 043305.

[45] , et al. A high performance semitransparent organic photodetector with green color selectivity[J]. Applied Physics Letters, 2014, 105(21): 213301.

[46] , et al. Low dark current inverted organic photodetectors employing MoOx: Al cathode interlayer[J]. Organic Electronics, 2015, 24: 176-181.

[47] , et al. Fast and air stable near-infrared organic detector based on squaraine dyes[J]. Organic Electronics, 2009, 10(7): 1314-1319.

[48] , et al. High detectivity squaraine-based near infrared photodetector with nA/cm 2 dark current[J]. Applied Physics Letters, 2011, 98(7): 073303.

[49] , et al. Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers[J]. Journal of Materials Chemistry C, 2013, 1(22): 3532-3543.

[50] , et al. Narrow band green organic photodiodes for imaging[J]. Organic Electronics, 2014, 15(11): 2903-2911.

[51] , et al. All-organic and fully-printed semitransparent photodetectors based on narrow bandgap conjugated molecules[J]. Advanced Materials, 2014, 26(39): 6773-6777.

[52] , et al. Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors[J]. Applied Physics Letters, 2007, 91(19): 193510.

[53] , et al. Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components[J]. Journal of Lightwave Technology, 2008, 26(7): 816-823.

[54] . Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes[J]. Applied Physics Letters, 2000, 77(14): 2255-2257.

[55] , et al. High sensitivity organic photodiodes with low dark currents and increased lifetimes[J]. Organic Electronics, 2008, 9(3): 369-376.

[56] , et al. Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes[J]. Organic Electronics, 2012, 13(11): 2727-2732.

[57] , et al. Inverted organic photodetectors with ZnO electron-collecting buffer layers and polymer bulk heterojunction active layers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 130-136.

[58] , et al. Enhanced photocurrent in organic photodetectors by the tunneling effect of a hafnium oxide thin film as an electron blocking layer[J]. RSC Advances, 2019, 9(51): 29993-29997.

[59] , et al. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells[J]. Physical Review B, 2011, 83(16): 165311.

[60] , et al. Efficient indium-tin-oxide (ITO) free top-absorbing organic photodetector with highly transparent polymer top electrode[J]. Organic Electronics, 2011, 12(10): 1669-1673.

[61] , et al. Performance of ITO-free inverted organic bulk heterojunction photodetectors: comparison with standard device architecture[J]. Organic Electronics, 2013, 14(10): 2484-2490.

[62] , et al. Transparent conductive electrodes from graphene/PEDOT∶PSS hybrid inks for ultrathin organic photodetectors[J]. Advanced Materials, 2015, 27(4): 669-675.

[63] , et al. Top illuminated organic photodetectors with dielectric/metal/dielectric transparent anode[J]. Organic Electronics, 2015, 20: 103-111.

[64] , et al. Carbon nanotube woven textile photodetector[J]. Physical Review Materials, 2018, 2: 015201.

[65] . Aligned nanofibers as an interfacial layer for achieving high-detectivity and fast-response organic photodetectors[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7032-7037.

[66] , et al. High sensitivity and fast response Sol-gel ZnO electrode buffer layer based organic photodetectors with large linear dynamic range at low operating voltage[J]. Organic Electronics, 2018, 56: 51-58.

[67] , et al. Work function tuning for high-performance solution-processed organic photodetectors with inverted structure[J]. Advanced Materials, 2013, 25(45): 6534-6538.

[68] , et al. P-doped organic semiconductor: potential replacement for PEDOT∶PSS in organic photodetectors[J]. Applied Physics Letters, 2016, 109(7): 073301.

[69] , et al. Thick junction broadband organic photodiodes[J]. Laser & Photonics Reviews, 2014, 8(6): 924-932.

[70] , et al. High-performance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12937-12946.

[71] , et al. Insights into the failure mechanisms of organic photodetectors[J]. Advanced Electronic Materials, 2018, 4(2): 1700526.

[72] , et al. Dark current reduction strategies using edge-on aligned donor polymers for high detectivity and responsivity organic photodetectors[J]. Polymer Chemistry, 2017, 8(23): 3612-3621.

[73] , et al. Monitoring fluorescent calcium signals in neural cells with organic photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(29): 9049-9056.

[74] , et al. Plastic near-infrared photodetectors utilizing low band gap polymer[J]. Advanced Materials, 2007, 19(22): 3979-3983.

[75] . Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nature Communications, 2015, 6: 6343.

[76] , et al. Improving spray coated organic photodetectors performance by using 1, 8-diiodooctane as processing additive[J]. Organic Electronics, 2018, 54: 21-26.

[77] , et al. Near-infrared organic photodetectors based on bay-annulated indigo showing broadband absorption and high detectivities up to 1. 1 μm[J]. Journal of Materials Chemistry C, 2018, 6(43): 11645-11650.

[78] , et al. Flexible image sensor array with bulk heterojunction organic photodiode[J]. Applied Physics Letters, 2008, 92(21): 213303.

[79] , et al. Realization of high detectivity organic ultraviolet photodetectors by modifying polymer active layer[J]. Organic Electronics, 2014, 15(11): 3000-3005.

[80] , et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

[81] , et al. Semiconducting polymer photodetectors with electron and hole blocking layers: high detectivity in the near-infrared[J]. Sensors, 2010, 10(7): 6488-6496.

[82] . Near infrared organic photodetector utilizing a double electron blocking layer[J]. Optics Express, 2016, 24(22): 25308-25316.

[83] , et al. New application of AIEgens realized in photodetectors: reduced work function of transparent electrodes and much improved performance[J]. Materials Chemistry Frontiers, 2018, 2(2): 264-269.

[84] , et al. A planar organic near infrared light detector based on bulk heterojunction of a heteroquaterphenoquinone and poly[2-methoxy-5-( 2'-ethyl-hexyloxy)-1, 4-phenylene vinylene][J]. Journal of Applied Physics, 2008, 104(11): 114508.

[85] . Ho P K H, Friend R H, et al. The dependence of device dark current on the active-layer morphology of solution-processed organic photodetectors[J]. Advanced Functional Materials, 2010, 20(22): 3895-3903.

[86] , et al. Spectral response tuning and realization of quasi-solar-blind detection in organic ultraviolet photodetectors[J]. Organic Electronics, 2011, 12(1): 70-77.

[87] , et al. Rigid, conjugated macrocycles for high performance organic photodetectors[J]. Journal of the American Chemical Society, 2016, 138(50): 16426-16431.

[88] . Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427.

[89] , et al. Efficient photodiodes from interpenetrating polymer networks[J]. Nature, 1995, 376(6540): 498-500.

[90] . Brenner T J K, et al. Effects of layer thickness and annealing of PEDOT∶PSS layers in organic photodetectors[J]. Macromolecules, 2009, 42(17): 6741-6747.

[91] . All ink-jet printed polyfluorene photosensor for high illuminance detection[J]. Organic Electronics, 2011, 12(4): 682-685.

[92] , et al. High-detectivity all-polymer photodetectors with spectral response from 300 to 1100 nm[J]. Macromolecular Chemistry and Physics, 2016, 217(15): 1683-1689.

[93] , et al. Effect of compositions of acceptor polymers on dark current and photocurrent of all-polymer bulk-heterojunction photodetectors[J]. Polymer, 2017, 114: 173-179.

[94] . O'Brien S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318(6042): 162-163.

[95] , et al. Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62(6): 585-587.

[96] , et al. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection[J]. Lab on a Chip, 2008, 8(5): 794-800.

[97] , et al. Organic photodetector arrays with indium tin oxide electrodes patterned using directly transferred metal masks[J]. Applied Physics Letters, 2009, 94(4): 043313.

[98] , et al. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system[J]. Journal of Applied Physics, 2010, 108(3): 034502.

[99] . An integrated organic passive pixel sensor[J]. Organic Electronics, 2011, 12(11): 1822-1825.

[100] . Fast response organic photodetectors with high detectivity based on rubrene and C60[J]. Organic Electronics, 2013, 14(11): 3019-3023.

[101] , et al. Organic cavity photodetectors based on nanometer-thick active layers for tunable monochromatic spectral response[J]. ACS Photonics, 2019, 6(6): 1393-1399.

[102] , et al. Porphyrin-tape/C60 organic photodetectors with 6.5% external quantum efficiency in the near infrared[J]. Advanced Materials, 2010, 22(25): 2780-2783.

[103] . Fang, Su Z S, et al. Aluminum-doped zinc oxide as anode for organic near-infrared photodetectors[J]. Journal of Physics D: Applied Physics, 2014, 47(33): 335104.

[104] , et al. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction[J]. Organic Electronics, 2014, 15(10): 2367-2371.

[105] , et al. CuPc/C60 heterojunction photodetector with near-infrared spectral response[J]. Materials Letters, 2017, 201: 137-139.

[106] . Tandem organic photodetectors with tunable, broadband response[J]. Applied Physics Letters, 2012, 101(22): 223301.

[107] , et al. Organic ultraviolet photodetector based on phosphorescent material[J]. Optics Letters, 2013, 38(19): 3823-3826.

[108] . High efficiency organic multilayer photodetectors based on singlet exciton fission[J]. Applied Physics Letters, 2009, 95(3): 033301.

[109] , et al. Plasmon-induced sub-bandgap photodetection with organic Schottky diodes[J]. Advanced Functional Materials, 2016, 26(31): 5741-5747.

[110] , et al. Remarkably enhanced red-NIR broad spectral absorption via gold nanoparticles: applications for organic photosensitive diodes[J]. Nanoscale, 2015, 7(34): 14422-14433.

[111] , et al. Enhanced photoresponse in metasurface-integrated organic photodetectors[J]. Nano Letters, 2018, 18(6): 3362-3367.

[112] , 等. 钙钛矿光电探测器的研究进展[J]. 激光与光电子学进展, 2019, 56(1): 010001.

    , et al. Research progress in perovskite photodetectors[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010001.

[113] , 等. 二维层状钙钛矿材料及其应用研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070002.

    , et al. Research progress of two-dimensional layered perovskite materials and their applications[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070002.

[114] , et al. Nanodevices: record-low-threshold lasers based on atomically smooth triangular nanoplatelet perovskite[J]. Advanced Functional Materials, 2019, 29(2): 1970012.

[115] , et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region[J]. Advanced Functional Materials, 2017, 27(42): 1703953.

[116] , et al. Organic membrane photonic integrated circuits (OMPICs)[J]. Optics Express, 2017, 25(16): 18537.

[117] , et al. Organic semiconductors: fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 2070015.

[118] , et al. Standing wave spectrometer with semi-transparent organic detector[J]. Journal of Materials Chemistry C, 2018, 6(42): 11457-11464.

[119] , et al. Organic photodiodes from homochiral l-proline derived squaraine compounds with strong circular dichroism[J]. Physical Chemistry Chemical Physics, 2017, 19(10): 6996-7008.

[120] , et al. Tellurophene-based random copolymers for high responsivity and detectivity photodetectors[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1917-1924.

[121] , et al. Research progress in organic photomultiplication photodetectors[J]. Nanomaterials, 2018, 8(9): 713.

[122] , 等. 有机光电倍增探测器研究进展[J]. 激光与光电子学进展, 2018, 55(7): 070001.

    , et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070001.

[123] , et al. Photomultiplication type organic photodetectors based on electron tunneling injection[J]. Nanoscale, 2020, 12(2): 1091-1099.

[124] , et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives[J]. Advanced Materials, 2009, 21(6): 683-687.

[125] , et al. Tuning the spectral response of ultraviolet organic-inorganic hybrid photodetectors via charge trapping and charge collection narrowing[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 11273-11284.

[126] , et al. Efficient hybrid tandem solar cells based on optical reinforcement of colloidal quantum dots with organic bulk heterojunctions[J]. Advanced Energy Materials, 2020, 10(7): 1903294.

[127] . Broadband hybrid organic/CuInSe2 quantum dot photodetectors[J]. Journal of Materials Chemistry C, 2018, 6(10): 2573-2579.

[128] , et al. Organic-inorganic hybrid nanocomposite for enhanced photo-sensing of PFO-DBT∶MEH-PPV∶PC71BM blend-based photodetector[J]. Journal of Nanoparticle Research, 2015, 17(9): 372.

[129] , et al. Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes[J]. Applied Physics Letters, 2008, 92(23): 233301.

[130] , et al. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids[J]. Scripta Materialia, 2010, 63(6): 653-656.

[131] , et al. Ultraviolet detector based on TiO2 nanowire array-polymer hybrids with low dark current[J]. Journal of Alloys and Compounds, 2015, 618: 233-235.

[132] , et al. ZnO/poly(9, 9-dihexylfluorene) based inorganic/organic hybrid ultraviolet photodetector[J]. Applied Physics Letters, 2008, 93(15): 153309.

[133] , et al. Efficient photodetection at IR wavelengths by incorporation of PbSe-carbon-nanotube conjugates in a polymeric nanocomposite[J]. Advanced Materials, 2007, 19(2): 232-236.

[134] , et al. Ultrasensitive organic-modulated CsPbBr3 quantum dot photodetectors via fast interfacial charge transfer[J]. Advanced Materials Interfaces, 2020, 7: 1901741.

赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. 结型有机光电探测器的研究进展[J]. 激光与光电子学进展, 2020, 57(13): 130001. 赵成杰, 李国辉, 韩悦, 王文艳, 张叶, 郝玉英, 崔艳霞. Research Progress in Junction Type Organic Photodetectors[J]. Laser & Optoelectronics Progress, 2020, 57(13): 130001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!