作者单位
摘要
1 太原理工大学 光电工程学院,山西 太原 030024
2 西安电子科技大学 光电工程学院,陕西 西安 710071
偏振成像技术作为一种新型的光学成像技术,可以实现抑制背景噪声、提高探测距离、获取目标细节特征和识别伪装目标等功能。由于成像空间维度的不同,偏振二维成像和偏振三维成像在不同领域中具有良好的应用前景。文中从偏振光的表示与传播方式入手,先后对偏振成像系统、偏振二维成像技术、偏振三维成像技术和基于超表面偏振器件的偏振探测及成像的研究展开综述。首先,根据偏振成像系统结构的不同,偏振成像系统可分为分时型、分振幅型、分孔径型和分焦平面型四种,并对以上偏振成像系统分别进行详细介绍和比较分析。其次,阐述了基于图像增强技术的偏振二维成像。图像增强技术分为偏振差分算法和图像融合两种。对于偏振三维成像,根据所处理反射光成分的不同,分为基于镜面反射光和漫反射光的偏振三维成像。综述了三维形貌重建过程中天顶角和方位角多值性问题的解决办法。为了高效准确地获取偏振信息,基于超表面结构的偏振器件成为当前研究的热点。进一步介绍了基于超表面偏振器件的偏振探测及成像技术。最后,总结全文并对偏振成像技术的发展前景进行展望。
光学成像 偏振二维成像 偏振三维成像 超表面结构 optical imaging 2D polarization imaging 3D polarization imaging metasurface 
红外与激光工程
2023, 52(9): 20220808
作者单位
摘要
1 太原理工大学 物理学院,山西 太原 030024
2 太原理工大学 光电工程学院,山西 太原 030024
3 兴县经开区铝镁新材料研发有限公司,山西 吕梁 035300
宽谱响应光电探测器在图像传感和光通信等领域应用前景广阔。金属微纳结构通过激发表面等离激元共振效应可高效产生热载流子,将它们与宽带隙半导体构成异质结构,便可利用热载流子开发出低成本宽谱响应光电探测器。研究设计了一种基于Au/TiO2复合纳米结构的热电子光电探测器。其中TiO2层经退火后形成尺度约为百纳米的凹凸结构,Au纳米颗粒层与用作电极的保形Au膜共同组成了激发表面等离激元共振的纳米结构。由于Au/TiO2复合纳米结构的协同作用,该器件在400~900 nm范围内具有宽谱光吸收性能,器件的平均光吸收效率为33.84%。在此基础上,该器件能够探测TiO2本征吸收波段以外的入射光子。例如,在600 nm波长处,器件的响应率为9.67 μA/W,线性动态范围为60 dB,器件的上升/下降响应速度分别为1.6 ms和1.5 ms。此外,利用有限元法进行了仿真计算,通过电场分布图验证了Au/TiO2复合纳米结构中所激发的丰富表面等离激元共振效应是其实现宽谱高效探测的原因所在。
光电探测器 表面等离激元 金属纳米结构 热电子 宽谱 photodetectors surface plasmon resonance metal nanostructure hot-electrons wide spectrum 
红外与激光工程
2023, 52(3): 20220464
作者单位
摘要
太原理工大学 物理与光电工程学院, 山西 太原  030024
纳米激光器在光通信、全息技术、生物医疗成像等领域有着广泛的应用前景。表面等离激元(Surface plasmon polariton, SPP)沿着金属表面传播,基于该特性可制成突破衍射极限的低阈值纳米激光器。它们不但具有小尺寸特征,同时还能激发Purcell效应,表现出更高的自发辐射效率。近年来,金属‐绝缘体‐半导体(MIS)波导结构的SPP激光器因具有超强的模式约束能力被大量报道。本文以基于MIS结构的SPP激光器为主题进行综述。首先,介绍了SPP激光器的工作原理,接着分别介绍了基于MIS波导结构的纳米片型和纳米线型SPP激光器的工作原理。然后,依据增益介质材料的不同,依次介绍了增益介质分别为Ⅱ‐Ⅵ半导体、Ⅲ‐Ⅴ半导体以及钙钛矿的SPP MIS波导激光器研究进展。最后,总结全文,并对基于MIS波导的SPP激光器未来的发展和挑战进行了展望。
表面等离激元 金属-绝缘体-半导体 激光器 纳米片 纳米线 surface plasmon polariton metal-insulator-semiconductor laser nanoplatelet nanowire 
发光学报
2022, 43(12): 1839
沈洁莲 1冀婷 1,*李国辉 1石林林 1[ ... ]崔艳霞 1,**
作者单位
摘要
1 太原理工大学物理与光电工程学院,山西 太原 030024
2 中国科学院上海高等研究院基础交叉研究中心,上海 201210

自组装模板法是一种制作大面积图案化纳米结构的低成本方法。与聚苯乙烯微球自组装模板相比,双通阳极氧化铝(AAO)自组装模板具有结构可调、绝缘性好、稳定性好等优点,被广泛应用于制备大面积图案化纳米结构以及改善传统光电器件的性能。首先介绍了双通AAO模板的制备原理及方法,接着总结了双通AAO模板辅助制备纳米颗粒、纳米线/棒、纳米管等图案化纳米结构的具体手段,随后介绍了这些图案化纳米结构分别在太阳能电池、光电探测器、发光二极管等光电器件中的应用。最后,对双通AAO模板辅助图案化纳米结构的发展进行了展望。

材料 阳极氧化铝模板 纳米结构 太阳能电池 光电探测器 发光二极管 
激光与光电子学进展
2022, 59(3): 0300001
作者单位
摘要
1 河南平原光电有限公司,河南 焦作 454001
2 大连理工大学 控制科学与工程学院, 辽宁 大连 116024
针对某车载上反稳瞄系统中火炮瞄准线稳定精度0.2 mrad的要求,提出在惯性速率稳定闭环内增加高增益的加速度闭环校正,形成多闭环的控制回路,并通过ITAE(integral of time-weightde absolute error)最优控制对系统控制回路的PID参数进行整定。对上反稳瞄系统构成进行分析,对控制系统的负载、陀螺和无刷力矩电机等闭环回路进行建模仿真;利用ITAE最优控制器对多闭环控制系统的PID控制参数进行调节;对系统添加随机干扰和单位阶跃响应,测试其相关性能。测试结果表明:相比传统的调整PID参数和单速度环控制系统,基于加速度多闭环ITAE最优控制器可以使系统抗扰动性能提高约78%,超调量减小约23%,摇摆稳定精度提高约29%,可较好地满足上反稳瞄系统稳定性能的要求。
上反稳瞄系统 加速度反馈 最优控制 仿真 upper anti-stabilization aiming system acceleration feedback optimal control simulation 
应用光学
2021, 42(6): 997
作者单位
摘要
太原理工大学 物理与光电工程学院, 山西 太原 030024
光电探测器可以实现光信号到电信号的转换,在工业、**、医疗等领域已展现出巨大的应用价值。但是,传统的平直型光电探测器捕获线光的能力较弱,一定程度上限制了响应率等性能指标的进一步提高。而基于贵金属纳米结构的表面等离激元共振可以急剧增强近场区域的(纳米尺度)电场强度和对线光的捕获能力,大幅度地提高光电探测器性能。本文首先介绍了表面等离激元的基本原理。随后,详细介绍了金属纳米颗粒、金属光栅等不同结构的表面等离激元增强型光电探测器研究进展。最后,总结全文并针对表面等离激元增强型光电探测器的发展前景做出了展望。
传播型表面等离激元 局域表面等离激元 光电探测器 金属纳米颗粒 金属光栅 propagating surface plasmon polaritons localized surface plasmon polaritons photodetector metal nanoparticles metal grating 
发光学报
2021, 42(7): 1014
作者单位
摘要
太原理工大学物理与光电工程学院,山西 太原 030024
基于光生伏特原理的结型有机光电探测器(OPDs)被广泛研究。首先介绍了结型OPDs的三种主要结构及其原理,包含了平面异质结、体异质结和平面-体复合异质结,并介绍了结型OPDs的基本性能参数。基于构成异质结的半导体材料进行分类,分别综述了基于双有机小分子、聚合物-有机小分子、双聚合物等类型的异质结型OPDs在近年来的研究进展。此外,介绍了在对具有平直结构的结型OPDs的性能改善方面所采取的一些典型方法,并对结型OPDs的未来发展方向进行了展望。
激光与光电子学进展
2020, 57(13): 130001
作者单位
摘要
太原理工大学 物理与光电工程学院 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
通过热蒸发和磁控溅射方法在厚金属Ag反射层上制备了由一维周期性Ag金属薄层和MoO3/SiO2介质层组成的多波段吸收体。实验结果表明: 随着周期数(N)的增加, 吸收峰的个数也相应增加, 且精确等于周期数。对于Ag薄层厚度为14 nm、MoO3层和SiO2层厚度分别为2 nm及135 nm的吸收体, 实验测得在400~900 nm波长范围内的积分吸收效率从N=1时的29.4%增加到N=6时的57.2%, 趋势与理论计算结果一致。此外, 测量结果表明: 吸收峰对入射角度及偏振不敏感。笔者还在柔性聚对苯二甲酸乙二醇酯衬底上制备了多层吸收体, 弯曲1 000次后仍基本保持原有的吸波性能。该吸收体在光伏和热辐射调控等领域具有潜在应用价值。
吸收 多波段 多层膜 柔性衬底 absorption multiband multilayer flexible substrate 
红外与激光工程
2019, 48(2): 0203004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!